Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vận tốc: \(v=\sqrt{2gl(\cos\alpha-\cos\alpha_0)}\)
Lực căng dây: \(T=mg(3\cos\alpha-2\cos\alpha_0)\)
bạn có thể cho mình biết là tại sao v và lực căng dây lại được tính như vậy được ko ?
a) \(h=l-l\cos\alpha_0=1m\)
\(W=W_d+W_t=mgh=1J\)
b) Tính lực căng của dây treo khi vật qua vị trí cân bằng
Hai lực tác dụng vào vật: \(\overrightarrow{P},\overrightarrow{T}\)
Hợp lực: \(\overrightarrow{F}=\overrightarrow{P}+\overrightarrow{T}=m.\overrightarrow{a_{ht}}\)
\(m\frac{v^2_0}{l}=-P+T\)
\(T=m\frac{v^2_0}{l}+mg\)
\(T=3mg-2mg\cos\alpha_0=2N\)
Chọn mốc thế năng ở vị trí cân bằng
a. Ta có cơ năng
W = m g z = m g l ( 1 − cos 60 0 ) = 0 , 5.10.1 ( 1 − 0 , 5 ) = 2 , 5 ( J )
b. Theo định luật bảo toàn cơ năng
W A = W B ⇒ m g z A = 1 2 m v B 2 + m g z B ⇒ v B = 2 g ( z A − z B ) ( 1 ) M à z A = H M = l − O M = l − l cos α 0 z B = l − l cos α
Thay vào ( 1 ) ta có
v B = 2 g l ( cos α − cos α 0 ) + K h i α = 30 0 ⇒ v B = 2 g l ( cos 30 0 − cos 60 0 ) ⇒ v B = 2.10.1 ( 3 2 − 1 2 ) ≈ 2 , 71 ( m / s )
+ K h i α = 45 0 ⇒ v B = 2 g l ( cos 45 0 − cos 60 0 ) ⇒ v B = 2.10.1 ( 2 2 − 1 2 ) ≈ 2 , 035 ( m / s )
Xét tai B theo định luật II Newton ta có: P → + T → = m a →
Chiếu theo phương của dây
T − P y = m a h t ⇒ T − P cos α = m v 2 l ⇒ T − m g cos α = 2 m g ( cos α − cos α 0 ) ⇒ T = m g ( 3 cos α − 2 cos α 0 )
Khi α = 30 0 ⇒ T = m g ( 3 cos 30 0 − 2 cos 60 0 )
⇒ T = 0 , 5.10 ( 3. 3 2 − 2. 1 2 ) = 7 , 99 ( N )
Khi α = 45 0 ⇒ T = m g ( 3 cos 45 0 − 2 cos 60 0 )
⇒ T = 0 , 5.10 ( 3. 2 2 − 2. 1 2 ) = 5 , 61 N
Lưu ý: Khi làm trắc nghiệm thì các em áp dụng luôn hai công thức
+ Vận tốc của vật tại vị trí bất kỳ: v B = 2 g l ( cos α − cos α 0 )
+ Lực căng của sợi dây: T = m g ( 3 cos α − 2 cos α 0 )
c. Gọi C là vị trí để vật có v= 1,8m/s
Áp dụng công thức v C = 2 g l ( cos α − cos α 0 )
1 , 8 = 2.10.1 ( cos α − cos 60 0 ) ⇒ cos α = 0 , 662 ⇒ α = 48 , 55 0
Vật có đọ cao
z C = l − l cos α = 1 − 1.0 , 662 = 0 , 338 ( m )
d. Gọi D là vị trí vật có độ cao 0,18m
Áp dụng công thức
z D = l − l cos α ⇒ 0 , 18 = 1 − 1. cos α ⇒ cos α = 0 , 82
Áp dụng công thức
v D = 2 g l ( cos α − cos α 0 ) = 2.10.1. ( 0 , 82 − 0 , 5 ) = 2 , 53 ( m / s )
e. Gọi E là vị trí mà 2 w t = w đ Theo định luật bảo toàn cơ năng W A = W E
W A = W d E + W t E = 3 2 W d E ⇒ 2 , 5 = 3 2 . 1 2 . m v E 2 ⇒ v E = 2 , 5.4 3. m = 10 3.0 , 5 = 2 , 581 ( m / s )
f. Gọi F là vị trí để 2 w t = 3 w đ
Theo định luật bảo toàn cơ năng W A = W F
W A = W d F + W t F = 5 3 W t F ⇒ 2 , 5 = 5 3 . m g z F ⇒ z F = 2 , 5.3 5. m . g = 0 , 3 ( m ) M à z F = l − l cos α F ⇒ 0 , 3 = 1 − 1. cos α F ⇒ cos α F = 0 , 7 ⇒ α F = 45 , 573 0
Mặt khác v F = 2 g l ( cos α F − cos 60 0 ) = 2.10.1 ( 0 , 7 − 0 , 5 ) = 2 ( m / s )
Xét tại F theo định luật II Newton P → + T → = m a →
Chiếu theo phương của dây
− P cos α F + T F = m v F 2 l ⇒ − 0 , 5.10.0 , 7 + T F = 0 , 5. 2 2 1 ⇒ T = 5 , 5 ( N )
Chọn mặt phẳng ngang qua C làm gốc thế năng (hình 94)
Cơ năng tại A ứng với góc lệch α = 45 0
Cơ năng tại M ứng với góc lệch α = 30 0
Định luật bảo toàn cơ năng: W A = W M
Đáp án D
+ Chọn mốc tính thế năng tại vị trí thấp nhất của vật
Cơ năng của vật ở vị trí 1 ứng với góc α 0 là
Cơ năng của vật ở vị trí 1 ứng với góc là
Bỏ qua sức cản không khí, thì cơ năng của vật là một đại lượng bảo toàn tức là
W1 = W2
1
chọn gốc thế năng tại mặt đất.
xét ở vị trí ban đầu
\(W=W_t+W_đ=m.g.h+0=\)100J
2.
O h h' l A B C
(hình này gồm: bóng ở vị trí ban đầu\(\alpha=45^0\), và bóng ở trị trí hợp với phương ngang góc \(\alpha'\))
a)
chọn gốc thế năng tại vị trí ban đầu
cơ năng tại C
\(W_C=W_{t_C}+W_{đ_C}=m.g.Ah+0\)
Ah=\(l-Oh=l-l.cos\alpha=l\left(1-cos\alpha\right)\)
\(\Rightarrow W_C=m.g.l\left(1-cos\alpha\right)\)
cơ năng tại O
\(W_O=W_{t_C}+W_{đ_C}=0+\dfrac{1}{2}.m.v^2\)
bảo toàn cơ năng \(W_O=W_C\)
\(\Leftrightarrow20-10\sqrt{2}=\dfrac{1}{2}.m.v^2\)
\(\Rightarrow v\approx2,42\)m/s
b) tương tự cơ năng tại B
\(W_B=\dfrac{1}{2}.m.v_1^2+m.g.l\left(1-cos\alpha'\right)\)
với \(\alpha'=30^0\)
bảo toàn cơ năng
\(W_A=W_B\)
\(\Rightarrow v_1\approx1,782\)m/s