K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 12 2020

Không gian mẫu: \(C_{14}^5\)

Các cách chọn thỏa mãn gồm có: (1 đỏ 1 vàng 3 xanh), (2 đỏ 1 vàng 2 xanh), (1 đỏ 2 vàng 2 xanh)

Số cách: \(C_5^1C_6^1C_3^3+C_5^2C_6^1C_3^2+C_5^1C_6^2C_3^2\)

Xác suất: \(P=\dfrac{C_5^1C_6^1C_3^3+C_5^2C_6^1C_3^2+C_5^1C_6^2C_3^2}{C_{14}^5}=...\)

25 tháng 12 2020

Quảng cáo trắng trợn ghê tar :3 Cơ mà có mod Lâm là đủ rồi á THẦY :)

24 tháng 12 2022

\(n\left(\Omega\right)=C^3_9\)

\(n\left(A\right)=C^2_5\cdot C^1_4\)

=>P(A)=10/21

9 tháng 4 2017

Chọn A

Lời giải

Không gian mẫu là số sách chọn ngẫu nhiên mỗi hộp 1 viên bi

Số phần tử của không gian mẫu là  Ω = C 15 1 . C 18 1

Gọi X là biến cố "2 viên bi lấy ra từ mỗi hộp có cùng màu"

Ta có các kết quả thuận lợi cho biến cố X như sau

● Hộp A lấy ra 1 bi trắng và hộp B lấy ra 1 bi trắng, có C 4 1 . C 7 1  cách

● Hộp A lấy ra 1 bi đỏ và hộp B lấy ra 1 bi đỏ, có  C 5 1 . C 6 1  cách

● Hộp A lấy ra 1 bi xanh và hộp B lấy ra 1 bi xanh, có  C 6 1 . C 5 1  cách

Suy ra số phần tử của biến cố

Vậy xác suất cần tính

P ( X ) = Ω x Ω = 44 135

11 tháng 5 2017

Không gian mẫu là số cách chọn ngẫu nhiên 6 viên bi từ hộp chứa 14 viên bi.

Suy ra số phần tử của không gian mẫu là  

Gọi A là biến cố 6 viên bi được lấy ra có đủ cả ba màu . Để tìm số phần tử của biến cố A ta đi tìm số phần tử của biến cố   tức là 6 viên bi lấy ra không có đủ ba màu như sau:

   Trường hợp 1. Chọn 6 viên bi chỉ có một màu (chỉ chọn được màu vàng).

Do đó trường hợp này có  cách.

   Trường hợp 2. Chọn 6 viên bi có đúng hai màu xanh và đỏ, có  cách.

Chọn 6 viên bi có đúng hai màu đỏ và vàng, có    cách.

Chọn 6 viên bi có đúng hai màu xanh và vàng, có   cách.

Do đó trường hợp này có  cách.

Suy ra số phần tử của biến cố   .

Suy ra số phần tử của biến cố A là

Vậy xác suất cần tính 

Chọn B.

NV
22 tháng 12 2022

Không gian mẫu: \(C_{15}^4\)

a.

Số cách lấy 4 viên bi trong đó có 3 viên màu đỏ: \(C_7^3C_8^1\)

Xác suất: \(P=\dfrac{C_7^3.C_8^1}{C_{15}^4}\)

b.

Lấy 4 viên không có viên đỏ nào (lấy từ 8 viên 2 màu còn lại): \(C_8^4\) cách

Lấy 4 viên có ít nhất 1 viên đỏ: \(C_{15}^4-C_8^4\)

Xác suất: \(P=\dfrac{C_{15}^4-C_8^4}{C_{15}^4}\)

c.

Các trường hợp thỏa mãn: (2 đỏ 1 xanh 1 vàng), (1 đỏ 2 xanh 1 vàng), (1 đỏ 1 vàng 2 xanh)

Số cách lấy: \(C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2\)

Xác suất: \(P=\dfrac{C_7^2C_5^1C_3^1+C_7^1C_5^2C_3^1+C_7^1C_5^1C_3^2}{C_{15}^4}\)

2 tháng 1 2018

Đáp án D.

Chọn 2 cây trong 6 cây xoài có C 6 2   =   15  cách.

Chọn 2 cây trong 4 cây mít có C 4 2   =   6  cách.

Chọn 2 cây trong 2 cây xoài có C 2 2   =   1  cách.

Suy ra có tất cả  15 . 6 . 1 = 90 cách chọn 6 cây trồng.

Vậy xác suất cần tính là