Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a . dễ c/m được tam giác AOF đồng dạng với ADB(gg)
b. Dễ c/m được tứ giác BHKD nt do DKB=DHB=90 cùng nhìn cạnh BD
nên DHK=KBD(cùng nhìn cạnh DK)
mà DCB=DBK(cùng phụ với KBC)
từ đó ta được DHK=DCO hay tứ giác KHOC nt
c, theo mk câu c sai đề vì nếu cần c.m \(\frac{BD}{DM}-\frac{DM}{AM}=1\Leftrightarrow DB\cdot AM=DM^2+DM\cdot AM=DM\left(AM+DM\right)=DM\cdot AD\)
(đến đây vẫn đúng nha bạn)
ta thấy AMC đồng dạng với ADB hay \(\frac{AM}{AD}=\frac{MC}{DB}\Rightarrow AM\cdot BD=CM\cdot AD\)\(\Rightarrow CM\cdot AD=DM\cdot AD\Leftrightarrow CM=DM\)(vô lý )
nên mk cho là đề sai nếu mk có sai bạn chỉ mk vs ạ
Gợi ý:
a) \(DO\) song song với \(EC\) do chúng cùng vuông góc với \(BE\).
b) \(\Delta AEO\sim\Delta ABD\left(g.g\right)\Rightarrow\dfrac{AE}{AB}=\dfrac{AO}{AD}\Rightarrow AO.AB=AE.AD\).
c) \(B,O,E,N\) cùng thuộc đường tròn đường kính \(BN\) do \(\widehat{BON}=\widehat{BEN}=90^o\).
Mà \(B,O,E,D\) cùng thuộc đường tròn đường kính \(OD\) do \(\widehat{DBO}=\widehat{OED}=90^o\)
nên \(B,O,E,N,D\) cùng thuộc một đường tròn
và \(BN,OD\) cắt nhau tại trung điểm mỗi đường.
Suy ra tứ giác \(BOND\) là hình bình hành.
Từ đó suy ra tứ giác \(ODNC\) là hình bình hành.
a) Ta có: \(\angle DBO+\angle DFO=90+90=180\Rightarrow OBDF\) nội tiếp
Lấy I là trung điểm DO
Vì \(\Delta DBO,\Delta DFO\) lần lượt vuông tại B và F có I là trung điểm DO
\(\Rightarrow\left\{{}\begin{matrix}BI=DI=IO\\ID=IO=IF\end{matrix}\right.\Rightarrow IB=ID=IO=IF\Rightarrow I\) là tâm của (OBDF)
b) Ta có: \(AO=\sqrt{AF^2+OF^2}=\sqrt{\dfrac{16}{9}R^2+R^2}=\dfrac{5}{3}R\)
\(\Rightarrow cosDAB=\dfrac{AF}{AO}=\dfrac{\dfrac{4}{3}R}{\dfrac{5}{3}R}=\dfrac{4}{5}\)
c) Cần chứng minh \(\dfrac{BD}{DM}-1=\dfrac{DM}{AM}\Rightarrow\dfrac{DF-DM}{DM}=\dfrac{DM}{AM}\)
\(\Rightarrow\dfrac{MF}{DM}=\dfrac{DM}{AM}\Rightarrow DM^2=MF.MA\)
Vì \(\left\{{}\begin{matrix}MO\bot BC\\DB\bot BC\end{matrix}\right.\) \(\Rightarrow MO\parallel DB\)\(\Rightarrow\angle MOD=\angle BDO=\angle FDO\)
\(\Rightarrow\Delta MOD\) cân tại M \(\Rightarrow MO=MD\)
mà \(MO^2=MF.MA\Rightarrow MD^2=MF.MA\)
d) MO cắt nửa đường tròn tại E
Ta có: \(tanDAB=\dfrac{FO}{AF}=\dfrac{R}{\dfrac{4}{3}R}=\dfrac{3}{4}\)
mà \(tanDAB=\dfrac{MO}{OA}\Rightarrow\dfrac{MO}{OA}=\dfrac{3}{4}\Rightarrow MO=\dfrac{3}{4}.\dfrac{5}{3}R=\dfrac{5}{4}R\)
Vì \(MO\parallel DB\) \(\Rightarrow\dfrac{MO}{DB}=\dfrac{AO}{AB}=\dfrac{\dfrac{5}{3}R}{2R}=\dfrac{5}{6}\Rightarrow DB=\dfrac{MO}{\dfrac{5}{6}}=\dfrac{\dfrac{5}{4}R}{\dfrac{5}{6}}=\dfrac{3}{2}R\)
Có DB,OM rồi thì bạn thế vào tính \(S_{OBDM}=\dfrac{1}{2}.\left(BD+OM\right).BO\)
còn diện tích quạt \(BOE=\dfrac{90}{360}.R^2\pi=\dfrac{1}{4}R^2\pi\)
\(\Rightarrow\) diện tích tứ giác OBDM nằm ngoài đường tròn \(=S_{OBDM}-S_{quatBOE}\)
bạn thế vài tính nha
PS: ý tưởng là vậy chứ bạn tính toán lại cho kĩ,chứ mình hay tính nhầm lắm
a, Chứng minh được DBOF nội tiếp đường tròn tâm I là trung điểm của DO
b, O A = O F 2 + A F 2 = 5 R 3 => cos D A B ^ = A F A O = 4 5
c, ∆AMO:∆ADB(g.g) => D M A M = O B O A
mà M O D ^ = O D B ^ = O D M ^ => DM = OM
=> D B D M = D B O M = A D A M . Xét vế trái B D D M - D M A M = A D - D M A M = 1
d, D B = A B . tan D A B ^ = 8 R 3 . 3 4 = 2 R => O M = A O . tan D A B ^ = 5 R 4
=> S O M D B = 13 R 2 8
S O M D B ngoài = S O M D B - 1 4 S O , R = R 2 8 13 - 2 π
a ) Vì DB ,DF là tiếp tuyến của (O)
\(\Rightarrow\widehat{AFO}=\widehat{ABD}=90^0\Rightarrow\Delta AFO\sim\Delta ABD\left(g.g\right)\)
\(\Rightarrow\frac{AF}{AB}=\frac{AO}{AD}\Rightarrow AO.AB=AF.AD\)
b ) Ta có : DB là tiếp tuyến của (O)
\(\Rightarrow BK\perp DC\Rightarrow DB^2=DK.DC\)
Mà DF , DB là tiếp tuyến của (O) \(\Rightarrow BH\perp DO\Rightarrow DB^2=DH.DO\)
\(\Rightarrow DK.DC=DH.DO\Rightarrow\frac{DK}{DO}=\frac{DH}{DC}\)
\(\Rightarrow\Delta DKH\sim\Delta DOC\left(c.g.c\right)\) \(\Rightarrow\widehat{DHK}=\widehat{DCO}\)
\(\Rightarrow KHOC\) nội tiếp
1.
Trong tam giác vuông ABH:
\(BH=AB.sinA=12.sin20^0=4,1\left(km\right)\)
2.
a.
Do D là giao điểm 2 tiếp tuyến tại B và F \(\Rightarrow\widehat{DBO}=\widehat{DFO}=90^0\)
\(\Rightarrow\) B và F cùng nhìn OD dưới 1 góc vuông nên 4 điểm O, B, D, F cùng thuộc 1 đường tròn
b.
Do \(DB=DF\) (t/c hai tiếp tuyến cắt nhau) và \(OB=OF=R\)
\(\Rightarrow OD\) là trung trực của BF \(\Rightarrow OD\perp BF\) tại H và H là trung điểm BF
Áp dụng hệ thức lượng trong tam giác vuông OBD:
\(DB^2=DH.DO\) (1)
BC là đường kính \(\Rightarrow\widehat{BKC}=90^0\) (góc nt chắn nửa đường tròn)
Áp dụng hệ thức lượng trong tam giác vuông CBD:
\(DB^2=DK.DC\) (2)
(1);(2) \(\Rightarrow DH.DO=DK.DC\)
2c.
Theo gt MO và DB cùng vuông góc BC \(\Rightarrow MO||DB\)
\(\Rightarrow\widehat{MOD}=\widehat{BDO}\) (so le trong)
Lại có \(\widehat{BDO}=\widehat{MDO}\) (t/c 2 tiếp tuyến cắt nhau)
\(\Rightarrow\widehat{MDO}=\widehat{MOD}\Rightarrow\Delta MDO\) cân tại M
\(\Rightarrow MO=DM\)
Áp dụng định lý Thales trong tam giác ABD:
\(\dfrac{MO}{BD}=\dfrac{AM}{AD}\Rightarrow\dfrac{DM}{BD}=\dfrac{AM}{AD}\)
\(\Rightarrow\dfrac{BD}{DM}=\dfrac{AD}{AM}=\dfrac{AM+DM}{AM}=1+\dfrac{DM}{AM}\)
\(\Rightarrow\dfrac{BD}{DM}-\dfrac{DM}{AM}=1\)