Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{3^3\cdot2^6}{3^{-4}\cdot2^6}=3^7\)
b: \(=\left(\dfrac{3}{7}\right)^5\cdot\left(\dfrac{3}{7}\right)\cdot\dfrac{5^6}{3^6}:\left(\dfrac{625}{343}\right)^2\)
\(=\dfrac{3^6}{7^6}\cdot\dfrac{5^6}{3^6}:\dfrac{5^8}{7^6}\)
\(=\dfrac{1}{5^2}\)
c: \(=5^{4+3}\cdot\left(\dfrac{5}{2}\right)^{-5}\cdot\dfrac{1}{25}\)
\(=5^5\cdot\left(\dfrac{2}{5}\right)^5=2^5\)
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
Câu 1 :
a) \(4.\left(\frac{1}{32}\right)^{-2}:\left(2^3.\frac{1}{16}\right)\)
\(=2^2.32^2:\left(\frac{1}{8}.16\right)=\left(2.32\right)^2:2=64^2:2\)
\(=2048=2^{11}\)
b) \(5^2.3^5.\left(\frac{3}{5}\right)^2\)
\(=\left(5.\frac{3}{5}\right)^2.3^5=3^2.3^5=3^7\)
VIẾT CÁC BIỂU THỨC DƯỚI DẠNG LUỸ THỪA CỦA 1 SỐ HỮU TỈ
\(a,4\cdot\left(\frac{1}{32}\right)^{-2}:\left(2^3\cdot\frac{1}{16}\right)\\ =4\cdot1024:\left(8\cdot\frac{1}{16}\right)\\ =4\cdot1024:\frac{1}{2}\\ =2\cdot1024\\ =2\cdot2^{10}\\ =2^{11}\)
\(b,5^2\cdot3^5\cdot\left(\frac{3}{5}\right)^2\\ =5^2\cdot\left(\frac{3}{5}\right)^2\cdot3^5\\ =3^2\cdot3^5\\ =3^7\)
2 SO SÁNH
\(a,10^{20}\text{ và }9^{10}\)
Có: \(9^{10}=\left(3^2\right)^{10}=3^{20}\)
\(\Rightarrow10^{20}>3^{20}\\ \text{hay}\text{ }10^{20}>9^{10}\)
\(b,\left(-5\right)^3\text{ và }\left(-3\right)^{50}\)
Có: \(\left(-3\right)^{50}=3^{50}\)
\(\Rightarrow\left(-5\right)^3< 3^{50}\\ \text{hay }\left(-5\right)^3< \left(-3\right)^{50}\)
\(c,64^3\text{ và }16^{12}\)
Có: \(64^3=\left(4^3\right)^3=4^9;16^{12}=\left(4^2\right)^{12}=4^{24}\)
\(\Rightarrow4^9< 4^{24}\\ hay\text{ }64^3< 16^{12}\)
\(d,\left(\frac{1}{16}\right)^{10}\text{ và }\left(\frac{1}{2}\right)^{50}\)
Có: \(\left(\frac{1}{2}\right)^{50}=\left(\frac{1}{2}\right)^{5\cdot10}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{32}\right)^{10}\\ \text{hay }\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
\(18^{20}.45^5.5^{25}.8^{10}\)
\(=3^{40}.2^{20}.5^5.3^{10}.5^{25}.2^{30}\)
\(=3^{50}.2^{50}.5^{30}\)
\(=6^{50}.5^{30}\)
\(=\left(6^5\right)^{10}.\left(5^3\right)^{10}\)
\(=\left(6^5.5^3\right)^{10}\)
\(\left(x^2y\right)^5.\left(x^2.y^2\right)^7.\left(x.y\right)^6.x^3\)
\(=x^{10}.y^5.x^{14}.y^{14}.x^6.y^3.x^3\)
\(=x^{33}.y^{22}\)
\(=\left(x^3\right)^{11}.\left(y^2\right)^{11}\)
\(=\left(x^3.y^2\right)^{11}\)
\(2^7.3^8.4^9.9^8\)
\(=2^7.3^8.2^{18}.3^{16}\)
\(=2^{25}.3^{24}\)( mk chỉ làm được đến thế thôi )
Tham khảo nhé~
a) \(18^{20}.45^5.5^{25}.8^{10}\)
\(=\left(2.3^2\right)^{20}.\left(3^2.5\right)^5.5^{25}.\left(2^3\right)^{10}\)
\(=2^{20}.3^{40}.3^{10}.5^5.5^{25}.2^{30}\)
\(=2^{50}.3^{50}.5^{30}\)
\(=6^{50}.5^{30}\)
\(=\left(6^5\right)^{10}.\left(5^3\right)^{10}\)
\(=7776^{10}.125^{10}\)
\(=972000^{10}\)
b ) \(\left(x^2y\right)^5.\left(x^2.y^2\right)^7.\left(xy\right)^6.x^3\)
\(=x^{10}.y^5.x^{14}.y^{14}.x^6.y^6.x^3\)
\(=x^{33}.y^{25}\)
\(=x^{25}.y^{25}.x^8\)
\(=...\)
c) \(2^7.3^8.4^9.9^8\)
\(=2^7.3^8.\left(2^2\right)^9.\left(3^2\right)^8\)
\(=2^7.3^8.2^{18}.3^{16}\)
\(=2^{25}.3^{24}\)
\(=...\)( Câu c này hình như đề bài sai sót . Không chuyển thành lũy thừa được )
Bài 1:
Bảng bình phương (1 đến 20)
Bảng lập phương (1 đến 10)