K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2018

1/ a/  \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}-1+2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(K=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(K=\frac{\sqrt{a}+1}{\sqrt{a}}:\frac{1}{\sqrt{a}-1}=\frac{\sqrt{a}+1}{\sqrt{a}}.\left(\sqrt{a}-1\right)\)

\(K=\frac{a-1}{\sqrt{a}}\)

b/ Với \(a=3+2\sqrt{2}\) => \(K=\frac{a-1}{\sqrt{a}}=\frac{3+2\sqrt{2}-1}{\sqrt{3+2\sqrt{2}}}=\frac{2+2\sqrt{2}}{\sqrt{2+2\sqrt{2}+1}}=\frac{2\left(\sqrt{2}+1\right)}{\sqrt{\left(\sqrt{2}+1\right)^2}}=\frac{2\left(\sqrt{2}+1\right)}{\left(\sqrt{2}+1\right)}\)

=> \(K=2\)

18 tháng 5 2018

2/ Ta có: x3-y3=x-y)(x2+xy+y2)=(x-y)(x2-2xy+y2+3xy)=(x-y)[(x-y)2+3xy]=9

Thay x-y=3 vào ta được: 3(9+3xy)=9

<=> 3+xy=1  => xy=-2

Ta có hệ PT: \(\hept{\begin{cases}x-y=3\\xy=-2\end{cases}}\)=> \(\hept{\begin{cases}x=y+3\\xy=-2\end{cases}}\)

=> y(y+3)+2=0

<=> y2+3y+2=0

<=> y2+y+2y+2=0  <=> y(y+1)+2(y+1)=0  <=> (y+1)(y+2)=0

=> y1=-1  => x1=2

y2=-2 => x2=1

Đáp số: Các cặp x,y là: (2; -1) và (1; -2)

22 tháng 5 2021

Bài 1 : 

Với \(a>0;a\ne1\)

\(\left(\frac{a+\sqrt{a}}{\sqrt{a}+1}-1\right)\left(\frac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)=\left(\sqrt{a}-1\right)^2=a-2\sqrt{a}+1\)

22 tháng 5 2021

Bài 2 : mình nhĩ đề phải là tìm m để hệ pt có nghiệm duy nhất

Để hpt có nghiệm duy nhất khi : \(\frac{m}{2}\ne1\Leftrightarrow m\ne2\)

Với \(m\ne2\)

\(\hept{\begin{cases}x+my=1\\x+2y=3\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-2\right)y=-2\\x+2y=3\end{cases}}}\)

\(\left(1\right)\Rightarrow y=-\frac{2}{m-2}\)Thay vào (2) ta được : 

\(x+2\left(-\frac{2}{m-2}\right)=3\Leftrightarrow x-\frac{4}{m-2}=3\Leftrightarrow x=3+\frac{4}{m-2}=\frac{3m-2}{m-2}\)

Vậy hpt có nghiệm duy nhất ( x ; y ) = ( \(\frac{3m-2}{m-2};-\frac{2}{m-2}\)

Thay vào biểu thức trên ta được : \(x+y=1\Rightarrow\frac{3m-2}{m-2}-\frac{2}{m-2}=1\)

\(\Leftrightarrow\frac{3m-4}{m-2}=\frac{m-2}{m-2}\Rightarrow2m=2\Leftrightarrow m=1\)

12 tháng 2 2017

a/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\left(1\right)\\2\sqrt{xy-y}-\sqrt{y}=-1\left(2\right)\end{cases}}\)

Điều kiện: \(\hept{\begin{cases}x\ge1\\0\le y\le1\end{cases}}\)

Xét phương trình (1) ta đễ thấy y = 0 không phải là nghiệm:

\(\sqrt{xy}+\sqrt{1-y}=\sqrt{y}\)

\(\Leftrightarrow\sqrt{y}\left(1-\sqrt{x}\right)=\sqrt{1-y}\)

\(\Leftrightarrow1-\sqrt{x}=\frac{\sqrt{1-y}}{\sqrt{y}}\)

\(\Rightarrow1-\sqrt{x}\ge0\)

\(\Leftrightarrow x\le1\)

Kết hợp với điều kiện ta được x = 1 thê vô PT (2) ta được y = 1

12 tháng 2 2017

b/ \(\hept{\begin{cases}\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\left(1\right)\\x-y+xy=3\left(2\right)\end{cases}}\)

Xét pt (1) ta có

\(\sqrt{\frac{2x}{y}}+\sqrt{\frac{2y}{x}}=3\)

Đặt \(\sqrt{\frac{x}{y}}=a\left(a>0\right)\)thì pt (1) thành

\(\sqrt{2}a+\frac{\sqrt{2}}{a}=3\)

\(\Leftrightarrow a^2+1=\frac{3}{\sqrt{2}}\)

Tới đây đơn giản rồi làm tiếp nhé

31 tháng 10 2018

Ôi trời nhiều thía ? làm từng câu một ha !

\(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)

31 tháng 10 2018

b, ĐKXĐ \(x\ne\pm y\)

Đặt \(\frac{1}{x+y}=a\)  và  \(\frac{1}{x-y}=b\)(a và b khác 0)

Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)

          \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)

       \(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)

      \(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)

    \(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)

   \(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)

  \(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)

19 tháng 12 2019

1/ĐKXĐ: \(x^2+4y+8\ge0\)

PT (1) \(\Leftrightarrow\left(x-2\right)\left(x-y+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=y-3\end{cases}}\)

+) Với x = 2, thay vào PT (2): \(4\sqrt{y^2+4}=y\sqrt{4y+12}\) (\(\text{ĐKXĐ:}y\ge-3\))

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\16\left(y^2+4\right)=y^2\left(4y+12\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge0\\4\left(y^3-y^2-16\right)=0\end{cases}}\)

\(\Rightarrow y=\frac{1}{3}\left(1+\sqrt[3]{217-12\sqrt{327}}+\sqrt[3]{217+12\sqrt{327}}\right)\)(nghiệm khổng lồ quá chả biết tính kiểu gì nên em nêu đáp án thôi:v)

Vậy...

+) Với x = y - 3, thay vào PT (2):

\(\left(y-1\right)\sqrt{y^2+4}=y\sqrt{y^2-2y+17}\)

\(\Rightarrow\left(y-1\right)^2\left(y^2+4\right)=y^2\left(y^2-2y+17\right)\)(Biến đổi hệ quả nên ta dùng dấu suy ra)

\(\Leftrightarrow4\left(1-3y\right)\left(y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=\frac{1}{3}\\y=-1\end{cases}}\)

Thử lại ta thấy chỉ có y = - 1 \(\Rightarrow x=y-3=-4\)