Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 chiều là x, y
=>
x + y = 14
x^2 + y^2 = 100
<=>
x = 14 - y
(14-y)2+y2 = 100
<=>
x = 14 - y
196 - 28y + y2 + y2 = 100
<=>
x = 14 - y
2y2 - 28y + 96 = 0
<=>
x = 14 - y
y = 6 hoặc y = 8
<=>
x = 8, y = 6
hoặc x = 6, y = 8
=> chiều dài: 8m, chiều rộng: 6m
gọi chiều dài. chiều rộng hcn lần lượt là a,b(a>b>0)
ta có(a+b).2=28
<=> a+b=14
=> a=14-b
lại có a^2+b^2=10^2
<=>(14-b)^2+b^2=100
<=>196-28b+2b^2=100
<=>[b=8=> a=6(loại)
[b=6=>a=8
Vậy chiều dài: 8 m
chiều rộng: 6 m
Nửa chu vi hcn là 28:2=14(m)
Gọi cd hcn là x (m) \(\rightarrow\)cr hcn là 14-x (m)
Áp dụng định lý :Py-ta-go trong tam giác vuông tạo bởi đường chéo và 2 cạnh của hcn,ta có phương trình:
\(x^2+\left(14-x\right)^2=10^2\)
\(\Leftrightarrow\) \(x^2+196-28x+x^2=100\)
\(\Leftrightarrow\) \(2x^2-28x+96=0\)
\(\Leftrightarrow\) \(2x^2-16x-12x+96=0\)
\(\Leftrightarrow\) \(2x\left(x-8\right)-12\left(x-8\right)=0\)
\(\Leftrightarrow\) \(\left(x-8\right)\left(2x-12\right)=0\)
\(\Leftrightarrow\) \(\hept{\begin{cases}x-8=0\\2x-12=0\end{cases}}\)
\(\Leftrightarrow\) \(\hept{\begin{cases}x=8\\x=6\end{cases}}\)
Với x=8 \(\rightarrow\)cd hcn là 8m.Cr hcn là : 14-8=6(m) \(\rightarrow\)thỏa mãn
Với x=6\(\rightarrow\)cd hcn là 6m.Cr hcn là : 14-6=8(m) \(\rightarrow\)vô lý vì cr ko thể lớn hơn cd
Vậy : Cd hcn là 8m
Cr hcn là 6m
Gọi chiều dài, chiều rộng hcn là \(a,b>0\left(m\right)\)
Ta có chu vi hình chữ nhật là 28m nên
\(2\left(a+b\right)=28\Leftrightarrow a+b=14\\ \Leftrightarrow b=14-a\)
Vì đường chéo hình chữ nhật là 10 nên
\(a^2+b^2=100\left(Pytago\right)\)
\(\Leftrightarrow a^2+\left(14-a\right)^2=100\\ \Leftrightarrow2a^2-28a+96=0\\ \Leftrightarrow a^2-14a+48=0\\ \Leftrightarrow\left(a^2-6a\right)-\left(8a-48\right)=0\\ \Leftrightarrow\left(a-6\right)\left(a-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=6\Rightarrow b=8\\a=8\Rightarrow b=6\end{matrix}\right.\)
Vậy độ dài 2 cạnh mảnh đất là 6m và 8m