Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi x là chiều dài mảnh đất (0<x<14; x>y)
Gọi y là chiều rộng mảnh vườn (0<y<14)
Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)
Vì đường chéo mảnh đất bằng 10m nên ta có PT:
x2+y2=100 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)(HPT dễ rồi bạn tự giải nha)
⇔\(\left\{{}\begin{matrix}y=8\\y=6\end{matrix}\right.\)(TM)
Vậy ta có 2 tập nghiệm (x;y) là (6;8) và (8;6)
-Độ dài 2 cạnh mảnh đất lần lượt là: 6cm và 8cm
Câu 1:
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chu vi mảnh đất là 28m nên ta có phương trình:
2(a+b)=28
hay a+b=14(1)
Vì đường chéo hình chữ nhật là 10m nên Áp dụng định lí Pytago, ta được:
\(a^2+b^2=100\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-28b+196+b^2-100=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=14-8=6\\b=14-6=8\end{matrix}\right.\\\left[{}\begin{matrix}b=6\\b=8\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=6\end{matrix}\right.\)(thỏa ĐK)
Vậy: Độ dài hai cạnh của mảnh đất hình chữ nhật lần lượt là 8m và 6m
Nửa chu vi của hình chữ nhật đó là :
\(42\div2=21\left(m\right)\)
Gọi chiều dài và chiều rộng của hình chữ nhật đó lần lượt là : a ; b \(\left(0< a;b< 21\right)\)
Do 2 lần chiều dài hơn 3 lần chiều rộng là 2m nên ta có :
\(2a-3b=2\)
Lại có nửa chu vi là 21m \(\Rightarrow a+b=21\)
Ta có : \(\hept{\begin{cases}2a-3b=2\\a+b=21\end{cases}}\)
nhập vào máy oy sẽ ra \(\hept{\begin{cases}a=13\\b=8\end{cases}}\)
Diện tích hình chữ nhật đó là :
\(13\times8=104\left(m^2\right)\)
Vậy...
gọi chiều dài là a, chiều rộng là b (a,b>0)
nửa chu vi hình chữ nhật là :`80:2=40(m)`
5 lần chiều rộng kém 2 lần chiều dài 10m => `2a-5b=10`
ta có hệ phương trình sau
\(\left\{{}\begin{matrix}a+b=40\\2a-5b=10\end{matrix}\right.< =>\left\{{}\begin{matrix}a=30\\b=10\end{matrix}\right.\)
diện tích miếng đất là: `30xx10=300(m^2)`
ds
Gọi chiều rộng, chiều dài lần lượt là a,b
Theo đề, ta có: a+b=40 và 5a-2b=10
=>a=90/7; b=190/7
Diện tích là 90/7*190/7=17100/49m2
Gọi chiều dài thửa ruộng là x(m)
Gọi chiều rộng thửa rộng là y(m)
Theo bài ra ta có hệ phương trình:
\(\hept{\begin{cases}2\left(x+y\right)=250\\2\left(\frac{x}{3}+2y\right)=250\end{cases}}\Rightarrow\hept{\begin{cases}x=75\\y=50\end{cases}}\)
Diện tích thửa ruộng là: \(75.50=3750\)
Gọi chiều dài và chiều rộng của hcn lần lượt là: a, b (m)
Ta có: \(\hept{\begin{cases}ab=300\\\left(a+5\right)\left(b-3\right)=300\left(1\right)\end{cases}}\)
Từ (1) \(\Rightarrow ab-3a+5b-15=300\)
\(\Leftrightarrow300-3a+5b-15=300\)\(\Leftrightarrow-3a+5b=15\)\(\Leftrightarrow3a-5b=-15\)
Đặt \(c=3a\)và \(d=-5b\)\(\Rightarrow a=\frac{c}{3}\); \(b=\frac{d}{-5}\)
Ta có hệ \(\hept{\begin{cases}\frac{c}{3}.\frac{d}{-5}=300\\c+d=-15\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{cd}{-15}=300\\c+d=-15\end{cases}}\Leftrightarrow\hept{\begin{cases}cd=-4500\\c+d=-15\end{cases}}\)
Áp dụng hệ thức Viets ta có: \(X^2-\left(-15\right)X-4500=X^2+15X-4500\)
\(\Delta=15^2-4.1.\left(-4500\right)=18225\)
\(X_1=c=\frac{-15+\sqrt{18225}}{2}=60\) hoặc \(X_2=d=\frac{-15-\sqrt{18225}}{2}=-75\)
\(\Rightarrow a=\frac{c}{3}=\frac{60}{3}=20\); \(b=\frac{-75}{-5}=15\)
\(\Rightarrow P_{hcn}=2\left(a+b\right)=2\left(20+15\right)=70\)
Vậy chu vi hcn ban đầu là 70 cm
GỌI CHIỀU DÀI LÀ X; CHIỀU RỘNG LÀ Y
TA CÓ 2*(X+Y)=28\(\Rightarrow\)X+Y=14
LẠI CÓ \(X^2+Y^2=10^2\)\(\Rightarrow\)(X+Y)^2 - 2X*Y=100
ĐẶT X+Y=A X*Y=B
GIẢI PHƯƠNG TRÌNH TÌM A VÀ B\(\Rightarrow\)X=? VÀ Y=?...