Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với 1 ≤ x < 2
A = (x + 3)/2
Với x ≥ 2
A = (x + 3)/[2√(x - 1)]
b/ Xét 1 ≤ x < 2
A ≥ (3 + 1)/2 = 2
Xét x ≥ 2
A = 2 + [√(x - 1) - 2]²/[2√(x - 2)] ≥ 2
Kết hợp 2 TH thì min là 2 khi x = 1 hoặc x = 5
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu
Theo hệ thức Vi ét ,ta có:
\(\hept{\begin{cases}x_1+x_2=2m\\x_1\cdot x_2=2m-1\end{cases}}\)
\(2\left(x_1^2+x_2^2\right)-5x_1x_2=27\Leftrightarrow2\left(x_1^2+x_2^2+2x_1x_2\right)-9x_1x_2=27\)
\(2\left(x_1+x_2\right)^2-9x_1x_2=27\)
\(\Rightarrow2\left(2m\right)^2-9\left(2m-1\right)=27\\ \Leftrightarrow8m^2-18m+9=0\)
\(\Rightarrow\orbr{\begin{cases}m=\frac{3}{2}\\m=\frac{3}{4}\end{cases}}\)
a, \(P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-1+1=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)
b, \(P=x-\sqrt{x}=x-\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)
Vậy Min P =-1/4
c, Chắc bằng nhau vì cùng dương mà
Phần a như bạn Đỗ Ngọc Hải chỉ thêm ĐKXĐ : x >= 0
b) Đkxd X >=0
Ta Có P = x-\(\sqrt{x}\) -2√x.½+1/4 -1/4=\(\left(\sqrt{x}-\frac{1}{2}\right)^2\)\(-\frac{1}{4}\)
Có √x>=0<=> (√x-½)2>=1/4<=>(√x-½)2-1/4>=0=>P>=0
Hay min p =0
Dấu = xảy ra <=> x=0
Vậy để minP=0<=>x=0
C)Dkxd x>1
CóP>=0(chứng minh trên )
=>|P|=P
ĐK :\(\hept{\begin{cases}x>=0\\x\ne1\end{cases}}\)
Ta có: \(A=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{\sqrt{x}+1}{x-1}-\frac{2}{x-1}\right]\)