Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
a) A= 54 . 34- (152-1).(152+1)
=(5.3)4-154-1
=154-154-1
=-1
\(1.\)
\(a.\)
\(\left(x-3\right)\left(x^2+3x+9\right)-\left(54+x^3\right)\)
\(=\left(x^3-3^3\right)-\left(54+x^3\right)\)
\(=x^3-27-54-x^3\)
\(=-81\)
\(b.\)
\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(27x^3+y^3\right)-\left(27x^3-y^3\right)\)
\(=27x^3+y^3-27x^3+y^3\)
\(=2y^3\)
\(2.\)
\(a.\)
\(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
\(b.\)
\(\left(2x-3y\right)\left(4x^2+6xy+9y^3\right)=8x^3-27y^3\)
1) a) \(\left(x-3\right)\left(x^2+3x+9\right)-\left(54+x^3\right)\)
\(=\left(x^3-3^3\right)-\left(54+x^3\right)\\ =\left(x^3-27\right)-54-x^3\\ =-27-54\\ =-81\)
b) \(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left[\left(3x\right)^3+y^3\right]-\left[\left(3x\right)^3-y^3\right]\\ =2y^3\)
2) a) \(\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3\)
b) \(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)=8x^3-27y^3\)
a:
ĐKXĐ: x<>2
|2x-3|=1
=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
Thay x=1 vào A, ta được:
\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)
b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)
\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)
\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)
\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)
\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)
c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)
\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)
Để P lớn nhất thì \(\dfrac{2}{x-2}\) max
=>x-2=1
=>x=3(nhận)
2. Viết hạng tử thích hợp vào dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.
a) \(25x^2+\cdot\cdot\cdot+81\)
\(=\left(5x\right)^2+...+9^2\)
\(=\left(5x\right)^2+2.5x.9+9^2\)
\(=25x^2+90x+81\)
b) \(64x^2-\cdot\cdot\cdot+9\)
\(=\left(8x\right)^2-\cdot\cdot\cdot+3^2\)
\(=\left(8x\right)^2-2.8x.3+3^2\)
\(=64x^2-48x+9\)
A) \(x^3+27\)
\(=x^3+3^3\)
\(=\left(x+3\right)\left(x^2-3x+9\right)\)
B) \(x^3-\dfrac{1}{8}\)
\(=x^3-\left(\dfrac{1}{2}\right)^3\)
\(=\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
C) \(8x^3+y^3\)
\(=\left(2x\right)^3+y^3\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
D) \(8x^3-27y^3\)
\(=\left(2x\right)^3-\left(3y\right)^3\)
\(=\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)
a)\(\left(x+3\right)\left(x^2-3x+9\right)\)
b)\(\left(x-\dfrac{1}{2}\right)\left(x^2+\dfrac{1}{2}x+\dfrac{1}{4}\right)\)
c)\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
d)\(\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)\)
1: \(\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-a^2b+ab^2+a^2b-ab^2+b^3\)
\(=a^3+b^3\)
2: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
bạn chép sai đề rồi
cái này bạn tách ra y như cái trc mình làm hộ bạn í
1)
a) x2/ 3xy/ 9y2
b) 3y/ 4x2/ 9y2
2)
a) A= 532 + 2.53.47 +472
= (53+47)2
= 1002 = 10000
b) B= 154 - 152 -1
= (152 - 15)(152 +15) -1
= 210.240-1
=50400 -1
= 50399
c) C= 502- 492+ 482- 472+...+22-12
= (502- 492)+ (482- 472)+...+(22-12)
= [(50-49)(50+49)] + [(48-47).(48+47)] +...+[(2+1)(2-1)]
=50+49+48+47+...+2+1
=(50+1)(50-1)+1/2
=502-1+1/2
=502 /2 =1250
tích cho mik đi bn ơi