Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)
=> \(3x-3-2x-6=-15\)
=> \(3x-3-2x-6+15=0\)
=> \(x=-6\)
Vậy phương trình có nghiệm là x = -6 .
b, Ta có : \(3\left(x-1\right)+2=3x-1\)
=> \(3x-3+2=3x-1\)
=> \(3x-3+2-3x+1=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)
=> \(14-35x-5=16-24x\)
=> \(14-35x-5-16+24x=0\)
=> \(-35x+24x=7\)
=> \(x=\frac{-7}{11}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .
Bài 2 :
a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)
=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)
=> \(x+15x-3=2x-16-10x-15\)
=> \(x+15x-3-2x+16+10x+15=0\)
=> \(24x+28=0\)
=> \(x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .
b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)
=> \(6x+24-30x+120=10x-15x+30\)
=> \(6x+24-30x+120-10x+15x-30=0\)
=> \(-19x+114=0\)
=> \(x=\frac{-114}{-19}=6\)
Vậy phương trình có nghiệm là x = 6 .
a) \(\dfrac{x+5}{3}-\dfrac{x-3}{5}=\dfrac{5}{x-3}-\dfrac{3}{x+5}\)
\(\Rightarrow\dfrac{5\left(x+5\right)}{15}-\dfrac{3\left(x-3\right)}{15}=\dfrac{5\left(x+5\right)}{\left(x-3\right)\left(x+5\right)}-\dfrac{3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Rightarrow\dfrac{5\left(x+5\right)-3\left(x-3\right)}{15}=\dfrac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
* Với \(5\left(x+5\right)-3\left(x-3\right)=0\),
Ta có được đẳng thức đúng
=> 5x + 25 - 3x + 9 = 0
=> 2x + 34 = 0
=> 2x = -34
=> x = -17
* Với 5( x+5 ) - 3 (x-3 ) \(\ne\)0, ta có
\(\dfrac{5\left(x+5\right)-3\left(x-3\right)}{15}=\dfrac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Rightarrow\dfrac{1}{15}=\dfrac{1}{\left(x-3\right)\left(x+5\right)}\)
\(\Rightarrow\left(x-3\right)\left(x+5\right)=15\)
\(\Rightarrow x^2+5x-3x-15-15=0\)
\(\Rightarrow x^2+2x-30=0\)
=> \(\left(x+1-\sqrt{31}\right)\left(x+1+\sqrt{31}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1+\sqrt{31}\\x=-1-\sqrt{31}\end{matrix}\right.\)
\(a)\dfrac{x+5}{3}-\dfrac{x-3}{5}=\dfrac{5}{x-3}-\dfrac{3}{x+5}\)(ĐKXĐ: \(x\ne3,x\ne-5\))
\(\Leftrightarrow\dfrac{x+5}{3}-\dfrac{x-3}{5}-\dfrac{5}{x-3}+\dfrac{3}{x+5}=0\\ \Leftrightarrow\dfrac{5\left(x-3\right)\left(x+5\right)^2-3\left(x-3\right)^2\left(x+5\right)-75\left(x+5\right)+45\left(x-3\right)}{15\left(x-3\right)\left(x+5\right)}=0\\ \Leftrightarrow\dfrac{2x^3+38x^2+8x-1020}{15\left(x-3\right)\left(x+5\right)}=0\\ \Leftrightarrow2x^3+38x^2+8x-1020=0\\ \Leftrightarrow\left(x+17\right)\left(x^2+2x-30\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+17=0\\x^2+2x-30=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-17\left(TM\right)\\x=-1+\sqrt{31}\left(TM\right)\\x=-1-\sqrt{31}\left(TM\right)\end{matrix}\right.\)
Vậy....
\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)
Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)
a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)
⇔ 3(x - 3) = 90 - 5(1 - 2x)
⇔ 3x - 9 = 90 - 5 + 10x
⇔ 3x - 10x = 90 - 5 + 9
⇔ -7x = 94
⇔ x = \(\frac{-94}{7}\)
S = { \(\frac{-94}{7}\) }
b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)
⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)
⇔ 6x - 4 - 60 = 9 - 6x - 42
⇔ 6x + 6x = 9 - 42 + 60 + 4
⇔ 12x = 31
⇔ x = \(\frac{31}{12}\)
S = { \(\frac{31}{12}\) }
c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7
⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210
⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210
⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40
⇔ 13x = 150
⇔ x = \(\frac{150}{13}\)
S = { \(\frac{150}{13}\) }
d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)
⇔ 21x - 120(x - 9) = 4(2x + 1,5)
⇔ 21x - 120x + 1080 = 8x + 6
⇔ 21x - 120x - 8x = 6 - 1080
⇔ -107x = -1074
⇔ x = \(\frac{1074}{107}\)
S = { \(\frac{1074}{107}\) }
e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5
⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840
⇔ 140x -140+56 -294x+42= 96x+48 -840
⇔ 140x -294x -96x = 48 -840 -42 -56+140
⇔ -250x = -750
⇔ x = 3
S = { 3 }
f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)
⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x
⇔ 4x+4+18x+9 = 4x+6x+6+7+12x
⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4
⇔ 0x = 0
S = R
Chúc bạn học tốt !
Bạn ơi giải giúp mình 2 bài này với ạ : https://hoc24.vn/hoi-dap/question/969683.html
Mình cảm ơn trước nhaa
1:a, ĐKXĐ: 3+x ≠ 0; x-3 ≠ 0; x2-3 ≠0 <=> x ≠ 3
=>-x(x-3)/(x+3)(x-3) - (x-2)(x+3)/(x+3)(x-3)=5/(x+3)(x-3)
=> -x2 + 3x/(x+3)(x-3) - (x2 + x - 6)/(x+3)(x-3)=5/(x+3)(x-3)
=>-x2 + 3x - x2 - x + 6=5
<=> 2x2 + 2x= -1
<=> 2x(x+1)=-1
<=> 2x(x+1)+1=0
<=>(2x+1)(x+1)=0
<=> 2x +1=0 <=> x=-1/2 (t/m đkxđ)
x+1=0<=> x=-1 ( t/m đkxđ)
Vậy pt đã cho có tập nghiệm S={-1/2;-1}
b,ĐKXĐ: x+2 ≠ 0; 2-x ≠ 0; x2-4 ≠ 0 <=>x ≠ ⊥ 2
=> x(x-2)/(x+2)(x-2) - (x-5)(x-2)/(x+2)(x-2)=7/(x+2)(x-2)
=>x2-2x-x2+7x-10=7
<=>5x=17
<=>x=17/5(t/m đkxđ)
Vậy pt đã cho có tập nghiệm S={17/5}
2: a,7x-2 ≥ 3x
<=> -2 ≥ -4x
<=> 1/2 ≤ x
Vậy bpt đã cho có tập nghiệm x ≥ 1/2
b, 5-x ≤ 2x
<=> 5 ≤ 2x-x
<=> 5 ≤ x
Vậy bpt đã cho có tập nghiệm 5 ≤ x
c, <=> 3(3x+5)/6 + 2(x-1)/6 ≤ 12x/6
<=> 9x + 15 +2x - 2 ≤ 12x
<=> -x ≤ -13
<=> x ≥ 13
Vậy bpt đã cho có tập nghiệp x ≥ 13