Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(-2\right)^3+2^2+\left(-1\right)^{20}+\left(-2\right)^0\)
\(=-8+4+1+1=-2\)
b) \(\left(3^2\right)^2-\left(-5^2\right)^2+\left[\left(-2\right)^3\right]^2\)
\(=9^2-\left(-25\right)^2+\left(-8\right)^2\)
\(=81-625+64=-480\)
c) Bạn sửa lại đề!
a) Đặt \(A=2^{2016}-2^{2015}+2^{2014}-2^{2013}+...+2^2-2^1\)
\(\Rightarrow2A=2^{2017}-2^{2016}+2^{2015}-2^{2014}+...+2^3-2^2\)
\(\Rightarrow2A+A=\left(2^{2017}-2^{2015}+2^{2014}-2^{2013}+...+2^3-2^2\right)+\left(2^{2016}-2^{2015}+2^{2014}-2^{2013}+...+2^2+2^1\right)\)
\(\Rightarrow3A=2^{2017}+1\)
\(\Rightarrow A=\frac{2^{2017}+1}{3}\)
b) Đặt \(B=3^{1000}-3^{999}+3^{998}-3^{997}+...+3^2-3^1+3^0\)
\(\Rightarrow3B=3^{1001}-3^{1000}+3^{999}-3^{997}+...+3^3-3^2+3^1\)
\(\Rightarrow3B+B=\left(3^{1001}-3^{1000}+3^{999}-3^{998}+...+3^3-3^2+3^1\right)+\left(3^{1000}-3^{999}+3^{998}-3^{997}+...+3^2-3^1+3^0\right)\)
\(\Rightarrow4B=3^{1001}+3^0\)
\(\Rightarrow B=\frac{3^{1001}+1}{4}\)
a) Đặt A = 22016 - 22015 + 22014 - 22013 + ... + 22 - 21
2A = 22017 - 22016 + 22015 - 22014 + ... + 23 - 22
2A + A = (22017 - 22016 + 22015 - 22014 + ... + 23 - 22) + (22016 - 22015 + 22014 - 22013 + ... + 22 - 21)
3A = 22017 - 21
3A = 22017 - 2
\(A=\frac{2^{2017}-2}{3}\)
b) lm tương tự câu a
\(=20^2-19^2+18^2-17^2+...+2^2-1^2\)
\(=\left(20+19\right)\left(20-19\right)+\left(18+17\right)\left(18-17\right)+...+\left(2+1\right)\left(2-1\right)\)
\(=39+35+..+3\)
\(=210\)
hỏi sao ko làm đăng lên làm gì ko biết thì hỏi ...