K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2020

Làm sao để ra được I (-2t-5;t) vậy bạn

12 tháng 6 2020

2)

Gọi (d) là đường thẳng qua M, H

Vì (d) vuông góc với (\(\Delta\)) => \(\overrightarrow{n_d}=\left(1;2\right)\)

có : (d) qua điểm M(3;-1) và 1 vtpt (1;2)

=> (d): \(\left(x-3\right)+2\left(y+1\right)=0\)

<=> (d) : \(x+2y-1=0\)

* \(H=\left(d\right)\cap\left(\Delta\right)\) nên tọa độ H là nghiệm của hệ:

\(\left\{{}\begin{matrix}2x-y+3=0\\x+2y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy tọa độ hình chiếu H(-1;1)

28 tháng 3 2022

Tham khảo:

undefined

28 tháng 3 2022

thấy sai sai :))

I nằm trên Δ nên I(x;2x+1)

\(IA=IB\)

=>IA^2=IB^2

=>(x+1)^2+(2x+1-1)^2=(x-1)^2+(2x+1+3)^2

=>x^2+2x+1+4x^2=x^2-2x+1+4x^2+16x+16

=>14x+17=2x+1

=>12x=-16

=>x=-4/3

=>I(-4/3;-5/3)

mà A(-1;1)

nên \(R=\sqrt{\left(-1+\dfrac{4}{3}\right)^2+\left(1+\dfrac{5}{3}\right)^2}=\dfrac{\sqrt{65}}{3}\)

=>\(\left(C\right):\left(x+\dfrac{4}{3}\right)^2+\left(y+\dfrac{5}{3}\right)^2=\dfrac{65}{9}\)

23 tháng 11 2021

A nhé

hihhihihiihihihhiihhiihihihih

NV
29 tháng 4 2021

Gọi P là trung điểm MN \(\Rightarrow P\left(0;-1\right)\)

\(\overrightarrow{MN}=\left(2;-4\right)=2\left(1;-2\right)\Rightarrow\) trung trực của MN nhận (1;-2) là 1 vtpt

Phương trình trung trực MN:

\(1\left(x-0\right)-2\left(y+1\right)=0\Leftrightarrow x-2y-2=0\)

Gọi I là tâm đường tròn cần tìm \(\Rightarrow\) I là giao điểm của d và trung trực MN

Tọa độ I thỏa mãn: \(\left\{{}\begin{matrix}x-2y-2=0\\2x-y+1=0\end{matrix}\right.\) \(\Rightarrow I\left(-\dfrac{4}{3};-\dfrac{5}{3}\right)\)

\(\overrightarrow{IM}=\left(\dfrac{1}{3};\dfrac{8}{3}\right)\Rightarrow R^2=IM^2=\dfrac{65}{9}\)

Phương trình: \(\left(x+\dfrac{4}{3}\right)^2+\left(y+\dfrac{5}{3}\right)^2=\dfrac{65}{9}\)

I nằm trên d nên I(x;-2x-5)

IA=IB=R

=>(x-1)^2+(-2x-5+3)^2=(x+3)^2+(-2x-5-1)^2

=>x^2-2x+1+4x^2+8x+4=x^2+6x+9+4x^2+24x+36

=>6x+5=30x+45

=>-24x=40

=>x=-5/3

=>I(-5/3;-5/3)

A(1;-3)

=>R=4/3*căn 5

=>(C): (x+5/3)^2+(y+5/3)^2=80/9

28 tháng 6 2021

Ta có : Đường thẳng I cách đều 2 đường thẳng d và denta

\(\Rightarrow\dfrac{\left|2x+y-3\right|}{\sqrt{5}}=\dfrac{\left|4x+2y-1\right|}{2\sqrt{5}}\)

\(\Rightarrow2\left|2x+y-3\right|=\left|4x+2y-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+2y-6=4x+2y-1\\4x+2y-6=-4x-2y+1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-6=1\left(L\right)\\8x+4y-7=0\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{8}{7}+\left(-\dfrac{4}{7}\right)+1=0\)

\(\Rightarrow a+b=-\dfrac{8}{7}-\dfrac{4}{7}=-\dfrac{12}{7}\)

Vậy ..

17 tháng 4 2021

a, Bán kính: \(R=2\sqrt{545}\)

Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=2180\)

Giao điểm của \(\left(C\right);\left(d\right)\) có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}x+3y+5=0\\\left(x+1\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3y-5\\\left(-3y-4\right)^2+\left(y-2\right)^2=2180\end{matrix}\right.\)

\(\Leftrightarrow...\)

17 tháng 4 2021

a, Bán kính: \(R=2\sqrt{5}\)

Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=20\)

Giao điểm của d và (C) có tọa độ là nghiệm hệ:

\(\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=20\\x+3y+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3y+4\right)^2+\left(y-2\right)^2=20\\x=-3y-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10y^2+20y=0\\x=-3y-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=-5\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}M=\left(0;-5\right)\\N=\left(-2;1\right)\end{matrix}\right.\) là các giao điểm

b, Gọi H là trung điểm AB.

Đường thẳng \(\Delta\) vuông góc với d nên có phương trình dạng: \(3x-y+m=0\left(m\in R\right)\)

Ta có: \(S_{IAB}=\dfrac{1}{2}.R^2.sinAIB=10.sinAIB=5\sqrt{3}\)

\(\Rightarrow sinAIB=\dfrac{\sqrt{3}}{2}\)

Mà tam giác ABC tù nên \(\widehat{AIB}=120^o\)

\(\Rightarrow\widehat{HBI}=30^o\)

Khi đó: 

\(IH=d\left(I;\Delta\right)\)

\(\Leftrightarrow R.sinHBI=\dfrac{\left|-3-2+m\right|}{\sqrt{10}}\)

\(\Leftrightarrow2\sqrt{5}.sin30^o=\dfrac{\left|m-5\right|}{\sqrt{10}}\)

\(\Leftrightarrow m=5\pm5\sqrt{2}\)

\(\Rightarrow\left[{}\begin{matrix}\Delta:3x-y+5+5\sqrt{2}=0\\\Delta:3x-y+5-5\sqrt{2}=0\end{matrix}\right.\)