K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

câu này hay thế!

26 tháng 6 2019

câu 1:

\(a,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)

=> \(25x^2+10x+1-\left(25x^2-9\right)=30\)

=> \(25x^2+10x+1-25x^2+9=30\)

=> \(10x+10=30\)

=> \(10x=20\)

=> \(x=2\)

Vậy..........

\(b,\left(2x+3\right)^2-\left(2x-3\right)^2+4\left(x^2-6x\right)=64\)

=> \(6.4x+4x^2-24x=64\)

=> \(24x+4x^2-24x=64\)

=> \(4x^2=64\)

=> \(x^2=64:4=16\)

=> \(\left|x\right|=\sqrt{16}\)

=> \(x=\pm4\)

Vậy \(x\in\left\{4;-4\right\}\)

20 tháng 4 2020

Viết tổng sau dưới dạng tích và tính giá trị biểu thức với x = -8x=−8.

10 tháng 12 2017

\(\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right].\frac{4x^2-4}{5}\)  \(ĐKXĐ:x\ne\pm1;\)

\(=\)\(\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x^2-1\right)}{5}\)

\(=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}\right]\)\(.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=\left[\frac{x^2+2x+1+6-\left(x^2+2x-3\right)}{2\left(x-1\right)\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=\frac{10}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(=4\)

14 tháng 8 2020

Bài làm:

1) \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)-2\)

\(=\left(x-3\right)\left(x^2-6x+9-x^2-3x-9\right)-2\)

\(=-9x\left(x-3\right)-2\)

\(=27x-9x^2-2\)

2) \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=\left(x-1\right)\left(x^2-2x+1-x^2-x-1+3x\right)\)

\(=\left(x-1\right).0=0\)

=> đpcm

3) \(\frac{68^3-52^3}{16}-68.52\)

\(=\frac{\left(68-52\right)\left(68^2+68.52+52^2\right)}{16}-68.52\)

\(=\frac{16\left(4624+68.52+2704\right)}{16}-68.52\)

\(=7328+68.52-68.52=7328\)

8 tháng 3 2021

\(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra <=> x = 3

Vậy MinA = 1

\(B=5x^2-10x+3=5\left(x^2-2x+1\right)-2=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu "=" xảy ra <=> x = 1

Vậy MinB = -2

\(C=2x^2+8x+y^2-10y+43=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu "=" xảy ra <=> x = -2 ; y = 5

Vậy MinC = 10

8 tháng 3 2021

\(A=x^2-6x+10\)

\(=\left(x^2-6x+9\right)+1\)

\(=\left(x-3\right)^2+1\ge1\forall x\)

Dấu"=" xảy ra khi \(x-3=0\Leftrightarrow x=3\)

Vậy \(Min_A=1\Leftrightarrow x=3\)

b,\(B=5x^2-10x+3\)

\(=5\left(x^2-2x+1\right)-2\)

\(=5\left(x-1\right)^2-2\ge-2\forall x\)

Dấu"=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)

Vậy \(Min_B=-2\Leftrightarrow x=1\)

c,\(C=2x^3+8x+y^2-10+43\)

\(=2x^2+8x+8+y^2-10y+25+10\)

\(=2\left(x^2+4x+4\right)+\left(y^2-10y+25\right)+10\)

\(=2\left(x+2\right)^2+\left(y-5\right)^2+10\ge10\forall x,y\)

Dấu"=" xảy ra khi \(\orbr{\begin{cases}x+2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\y=5\end{cases}}}\)

Vậy \(Min_C=10\Leftrightarrow x=-2;y=5\)

21 tháng 12 2021

Answer:

Câu 1:

\(\left(5x-x-\frac{1}{2}\right)2x\)

\(=\left(4x-\frac{1}{2}\right)2x\)

\(=4x.2x-\frac{1}{2}.2x\)

\(=8x^2-x\)

\(\left(x^3+4x^2+3x+12\right)\left(x+4\right)\)

\(=x\left(x^3+4x^2+3x+12\right)+4\left(x^3+4x^2+3x+12\right)\)

\(=x^4+4x^3+3x^2+12x+4x^3+16x^2+12x+48\)

\(=x^4+\left(4x^3+4x^3\right)+\left(3x^2+16x^2\right)+\left(12x+12x\right)+48\)

\(=x^4+8x^3+19x^2+24x+48\)

Ta thay \(x=99\) vào phân thức \(\frac{x^2+1}{x-1}\)\(\frac{\left(99\right)^2+1}{99-1}=\frac{9802}{98}=\frac{4901}{49}\)

Ta thay \(x=4\) vào phân thức \(\frac{x^2-x}{2\left(x-1\right)}\) : \(\frac{4^2-4}{2.\left(4-1\right)}=\frac{12}{6}=2\)

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(= (x²+2xy+y²)-(x²-2xy+y²)\)

\(= x²+2xy+y²-x²+2xy-y²\)

\(= 4xy\)

\(4x^2+4x+1=\left(2x+1\right)^2=\left(2.2+1\right)^2=25\)

Câu 2:

\(x^2+x=0\)

\(\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

\(x^2.\left(x-1\right)+4-4x=0\)

\(\Rightarrow x^2.\left(x-1\right)+4\left(1-x\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^2-4\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)

Trường hợp 1: \(x-1=0\Rightarrow x=1\)

Trường hợp 2: \(x-2=0\Rightarrow x=2\)

Trường hợp 3: \(x+2=0\Rightarrow x=-2\)

Câu 3: Bạn xem lại đề bài nhé.

ĐỀ KIỂM TRA HKI:NĂM HỌC:2016_2017MÔN:TOÁNBài 1:Thực hiện phép tínha) 3x2 (x3 + 3x2 - 2x + 1) - 3x3b) (x - 4)(2x + 3)Bài 2:Phân tích các đa thức sau thành nhân tửa) 5x3 + 10x2 + 5xb) x(2x - 7) - 6x + 21c) x2 + 2xz - 49 + z2d) x2 + 10x + 21Bài 3:Tìm xa) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15b) 3x(x - 5) - 6084(x - 5) = 0Bài 4:a) Sắp xếp đa thức theo lũy thừa giảm dần của biến rồi làm tính chia:(2x4 + 15x2 - 13x3 - 3 + 11x) : (x2 - 4x - 3)b)...
Đọc tiếp

ĐỀ KIỂM TRA HKI:

NĂM HỌC:2016_2017

MÔN:TOÁN

Bài 1:Thực hiện phép tính

a) 3x2 (x3 + 3x2 - 2x + 1) - 3x3

b) (x - 4)(2x + 3)

Bài 2:Phân tích các đa thức sau thành nhân tử

a) 5x3 + 10x2 + 5x

b) x(2x - 7) - 6x + 21

c) x2 + 2xz - 49 + z2

d) x2 + 10x + 21

Bài 3:Tìm x

a) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15

b) 3x(x - 5) - 6084(x - 5) = 0

Bài 4:

a) Sắp xếp đa thức theo lũy thừa giảm dần của biến rồi làm tính chia:

(2x4 + 15x2 - 13x3 - 3 + 11x) : (x2 - 4x - 3)

b) Tính:

\(\frac{x+2}{x+3}\)+\(\frac{1-x}{x+3}\) - \(\frac{6x}{\left(x-3\right)\left(x+3\right)}\)

c) Chứng minh biểu thức sau không phụ thuộc vào biến x và y:

\(\frac{y}{x-y}\) - \(\frac{x^3-xy^2}{x^2+y^2}\)\(\left[\frac{x}{\left(x-y\right)^2}-\frac{y}{x^2-y^2}\right]\)

Bài 5:

Cho hình bình hành ABCD có BC =2AB và Â=600 .Gọi E,F theo thứ tự là trung điểm của BC và AD. Gọi I là điểm đối xứng với A qua B.

a) Tứ giác ABEF là hình gì ? Vì sao ?

b) Chứng minh tam giác ADI là tam giác đều .

c) Tứ giác AIEF là hình gì ? Vì sao ?

d) Tứ giác BICD là hình gì ? Vì sao ?

...............................................................HẾT.............................................................

 

3
20 tháng 12 2016

bạn à. ko có bài 1 điểm à

21 tháng 12 2016

công nhận chẳng thấy bài 1đ đâu.

19 tháng 8 2016

\(2.A=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)=x^3-xy-x^3-x^2y+x^2y-xy=-2xy\\ Thayx=\frac{1}{2};y=-100vàoAđược:A=-2.\frac{1}{2}.\left(-100\right)=100\)

\(3.x\left(5-2x\right)+2x\left(x-1\right)=15\Leftrightarrow5x-2x^2+2x^2-2x=15\Leftrightarrow3x=15\Leftrightarrow x=5\)