Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$4-n\vdots n+1$
$\Rightarrow 5-(n+1)\vdots n+1$
$\Rightarrow 5\vdots n+1$
$\Rightarrow n+1\in \left\{1; 5\right\}$
$\Rightarrow n\in \left\{0; 4\right\}$
2.
Nếu $n$ chẵn $\Rightarrow n+6$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Nếu $n$ lẻ $\Rightarrow n+3$ chẵn.
$\Rightarrow (n+3)(n+6)$ chẵn $\Rightarrow (n+3)(n+6)\vdots 2$
Bài 1:
Ta có: \(2+2^2+2^3+...+2^{2010}=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right).\)
\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(2+2^2+2^3+...+2^{2010}=2\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{2008}\left(1+2+4\right)\)
\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)
bài 2:
Gọi d là ƯCLN của 2n+3 và 3n+4 \(\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+9⋮d\\6n+8⋮d\end{cases}\Rightarrow}1⋮d\Rightarrow d=1}\)
\(\RightarrowƯCLN\left(2n+3;3n+4\right)=1\)
\(\Rightarrow\)2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
Lời giải:
Gọi $d=ƯCLN(12n+1, 30n+2)$
$\Rightarrow 12n+1\vdots d; 30n+2\vdots d$
$\Rightarrow 5(12n+1)-2(30n+2)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
$\Rightarrow ƯCLN(12n+1, 30n+2)=1$
$\Rightarrow 12n+1, 30n+2$ là hai số nguyên tố cùng nhau.
Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa
Gọi ƯCLN(12n + 1;30n + 4) = d . Ta có :
12n + 1 ⋮ d => 5(12n + 1) = 60n + 5 ⋮ d
30n + 4 ⋮ d => 2(30n + 4) = 60n + 8 ⋮ d
=> (60n + 8) - (60n + 5) ⋮ d
=> 3 ⋮ d => d ∈ Ư(3) ∈ {1;3} ( Vì ƯCLN ko có số nguyên âm)
Mặt khác :12n + 1 không chia hết cho 3 (Vì 12n ⋮ 3 nhưng 1 ko chia hết cho 3)
=> d = 1 . Vậy 2 số sau là 2 số nguyên tố cùng nhau
Câu 2,3,4 bạn tham khảo câu hỏi tương tư nhé !
Câu 1 :
Gọi k là ƯCLN của 12n + 1 và 30n + 2 ( n thuộc N )
Ta có 12n + 1 chia hết cho k ; 30n + 2 chia hết cho k
5( 12n + 1 ) và 2( 30 n + 2 )
60n + 5 và 60n + 4
=> ĐPCM
tick cho mình đi