Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) x2-4x+5+y2+2y=0
<=>x2-4x+4+y2+2y+1=0
<=>(x-2)2+(x+1)2=0
<=>x-2=0 và x+1=0
<=>x=2 và x=-1
2)2p.p2-(p3-1)+(p+3)2p2-3p5
<=>2p3-p3+1+2p3+6p2-3p5
<=>3p3+6p2-3p5+1
3)(0.2a3)2-0.01a4(4a2-100)=0,04a6-0,04a6+1
=1
4)a) x(2x+1)-x2(x+20)+(x3-x+3)=2x2+x-x3-20x2+x3-x+3
=-18x2+3(đề sai)
b) x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2)=3x3-x2+5x-2x3-3x+16-x3+x2-2x
=16
Vậy x(3x2-x+5)-(2x3+3x-16)-x(x2-x+2) không phụ thuộc vào x
5)a) x(y-z)+y(z-x)+z(x-y)=xy-xz+yz-xy+xz-yz=0
b) x(y+z-yz)-y(z+x-xz)+z(y-x)=xy+xz-xyz-yz-xy+xyz+yz-xz=0
6)M+(12x4-15x2y+2xy2+7)=0
<=>M =-(12x4-15x2y+2xy2+7)
<=>M =-12x4+15x2y-2xy2-7
a )\(2x\left(xy-3\right)+3xy\left(x+1-y\right)+3x\left(y^2-1\right)=2x^2y-6x+3x^2y+3xy-3xy^2+3xy^2-3x=5x^2y-9x+3xy\)
=> Phụ thuộc vào giá trị của biến
b) \(\left(x+2y\right)\left(x-2y\right)-x\left(x+4y^2\right)+5=x^2-4y^2-x^2-4xy^2+5=-4y^2-4xy^2+5\)
=> Phụ thuộc vào giá trị của biến
c) \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(3x+2\right)=27x^3+8-9x^2+4=27x^3-9x^2+12\)
=> Phụ thuộc vào giá trị của biến
a: Ta có: \(2x\left(xy-3\right)+3xy\left(x-y+1\right)+3x\left(y^2-1\right)\)
\(=2x^2y-6x+3x^2y-3xy^2+3xy+3xy^2-3x\)
\(=5x^2y+3xy-9x\)
c: Ta có: \(\left(3x+2\right)\left(9x^2-6x+4\right)-\left(3x-2\right)\left(3x+2\right)\)
\(=27x^3+8-9x^2+4\)
\(=27x^3-9x^2+12\)
\(A=\left(x-2y\right)\left(x+2y\right)+\left(2y-x\right)^2+2023+4xy\)
\(A=x^2-\left(2y\right)^2+\left(4y^2-4xy+x^2\right)+2023+4xy\)
\(A=x^2-4y^2+4y^2-4xy+x^2+4xy\)
\(A=2x^2+2023\)
Vậy giá trị của biểu thức chỉ phụ thuộc vào x không phụ thuộc vào y
\(B=\left(2x-3\right)\left(x-y\right)-\left(x-y\right)^2+\left(y-x\right)\left(x+y\right)\)
\(B=2x^2-2xy-3x+3y-\left(x^2-2xy+y^2\right)+y^2-x^2\)
\(B=2x^2-2xy-3x+3y-x^2+2xy-y^2+y^2-x^2\)
\(B=-3x+3y\)
Vậy giá trị của biểu thức vẫn phụ thuộc vào biến
A = (\(x\) - 2y)(\(x\) + 2y) + (2y - \(x\))2 + 2023 + 4\(xy\)
A = \(x^2\) - 4y2 + 4y2 - 4\(xy\) + \(x^2\) + 2023 + 4\(xy\)
A = (\(x^2\) + \(x^2\)) - (4y2 - 4y2) + 2023 - (4\(xy\) - 4\(xy\))
A = 2\(x^2\) - 0 + 2023 - 0
A = 2\(x^2\) + 2023
Việc chứng minh A có giá trị không phụ thuộc vào giá trị của biến là điều không thể xảy ra.
a, gọi là A đi. \(A=6x^2+19x-7-6x^2-x-5-18x+12=5\)=> giá trị của A không phụ thuộc vào biến
b) \(B=x^4+x^3y+x^2y^2+xy^3-yx^3-x^2y^2-xy^3-y^4-x^4+y^4=0\)=> không phụ thuộc vào biến
câu b thì vế đầu nó là một hằng đẳng thức luôn rồi. là x^4-y^4. nhưng là hằng đẳng thức mở rộng nên chị mới làm tách hẳn ra. nếu em biết thì có thể làm nhanh hơn
a. (2x2 - 4x)\(\left(x-\dfrac{1}{2}\right)\)
= 2x3 - x2 - 4x2 + 2
= 2x3 - 5x2 + 2
b. (x2 - 2x + 1)(x - 1)
= (x - 1)2(x - 1)
= (x - 1)3
c. 3(y - x)(y2 + xy + x2)
= 3(y3 - x3)
= 3y3 - 3x3
d. (x - 1)(x + 1)(x - 2)
= (x2 - 1)(x - 2)
= x3 - 2x2 - x + 2x
= x3 - 2x2 + x
= x3 - x2 - x2 + x
= x2(x - 1) - x(x - 1)
= (x2 - x)(x - 1)
= x(x - 1)(x - 1)
= x(x - 1)2
Bài 1 :
a ) \(z\left(y-x\right)+y\left(x-z\right)+x\left(y+z\right)-2yz+100\)
\(=yz-xz+xy-yz+xy+xz-2yz+100\)
\(=2xy-2yz+100\) ( Đề sai )
b ) \(2y\left(y^2+y+1\right)-2y^2\left(y+1\right)-2\left(y+10\right)\)
\(=2y^3+2y^2+2y-2y^3-2y^2-2y-20\)
\(=-20\)
Vậy biểu thức không phụ thuộc vào biến .
Bài 2 :
a ) \(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(\Leftrightarrow36x^2-12x-36x^2+27x=30\)
\(\Leftrightarrow15x=30\)
\(\Leftrightarrow x=2\)
b ) \(2x\left(x-5\right)-x\left(2x+3\right)=x^2-x\left(x-1\right)\)
\(\Leftrightarrow2x^2-10x-2x^2-3x-x^2+x^2-x=0\)
\(\Leftrightarrow-14x=0\)
\(\Leftrightarrow x=0\)
Bài 1 câu a chép sai đề.....