Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: x^3+x^2-3x-3=0
=>x^2(x+1)-3(x+1)=0
=>(x+1)(x^2-3)=0
=>x=-1 hoặc x^2-3=0
=>\(S_1=\left\{-1;\sqrt{3};-\sqrt{3}\right\}\)
2x+3=1
=>2x=-2
=>x=-1
=>S2={-1}
=>Hai phương trình này không tương đương.
1: \(\dfrac{1}{\left|x+1\right|}+\dfrac{1}{x+2}=3\left(1\right)\)
TH1: x>-1
Pt sẽ là \(\dfrac{1}{x+1}+\dfrac{1}{x+2}=3\)
=>\(\dfrac{x+2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)
=>3(x+1)(x+2)=2x+3
=>3x^2+9x+6-2x-3=0
=>3x^2+7x+3=0
=>\(\left[{}\begin{matrix}x=\dfrac{-7-\sqrt{13}}{6}\left(loại\right)\\x=\dfrac{-7+\sqrt{13}}{6}\left(nhận\right)\end{matrix}\right.\)
TH2: x<-1
Pt sẽ là:
\(\dfrac{-1}{x+1}+\dfrac{1}{x+2}=3\)
=>\(\dfrac{-x-2+x+1}{\left(x+1\right)\left(x+2\right)}=3\)
=>\(\dfrac{-1}{\left(x+1\right)\left(x+2\right)}=3\)
=>-1=3(x+1)(x+2)
=>3(x^2+3x+2)=-1
=>3x^2+9x+6+1=0
=>3x^2+9x+7=0
Δ=9^2-4*3*7
=81-84=-3<0
=>Phương trình vô nghiệm
Vậy: \(S_3=\left\{\dfrac{-7+\sqrt{13}}{6}\right\}\)
x^2+x=0
=>x(x+1)=0
=>x=0 hoặc x=-1
=>S4={0;-1}
=>S4<>S3
=>Hai phương trình này không tương đương
Bài 1:
a) (3x - 2)(4x + 5) = 0
<=> 3x - 2 = 0 hoặc 4x + 5 = 0
<=> 3x = 2 hoặc 4x = -5
<=> x = 2/3 hoặc x = -5/4
b) (2,3x - 6,9)(0,1x + 2) = 0
<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
<=> 2,3x = 6,9 hoặc 0,1x = -2
<=> x = 3 hoặc x = -20
c) (4x + 2)(x^2 + 1) = 0
<=> 4x + 2 = 0 hoặc x^2 + 1 # 0
<=> 4x = -2
<=> x = -2/4 = -1/2
d) (2x + 7)(x - 5)(5x + 1) = 0
<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
<=> 2x = -7 hoặc x = 5 hoặc 5x = -1
<=> x = -7/2 hoặc x = 5 hoặc x = -1/5
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
\(a,\) PT thứ 2 bị lỗi rồi bạn, dấu '' = '' đou
\(b,\)
\(4x^2-32=0\Leftrightarrow4x^2=32\Leftrightarrow x^2=8\Leftrightarrow x=\pm\sqrt{8}\)
\(3x^2=48\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)
Vậy 2 pt trên không tường đương
\(a,6\left(x^2-2x+3\right)=2\left(3x^2-6x+9\right)\)
\(\Leftrightarrow6x^2-12x+18=6x^2-12x+18\)
\(\Leftrightarrow\) pt vô nghiệm
\(3x-6=3\left(x-2\right)\)
\(\Leftrightarrow3x-6=3x-6\)
\(\Leftrightarrow\) pt vô nghiệm
Vậy 2 pt tương đương
\(b,4x^2-32=0\Leftrightarrow x^2=8\Leftrightarrow x=\pm\sqrt{8}\)
\(3x^2=48\Leftrightarrow x=\pm4\)
Vậy 2 pt ko tương đương
Phương trình b tương đương vì chúng có cùng tập nghiệm là S={4;-4}
a: 6(x^2-2x+3)=2(3x^2-6x+9)
=>6x^2-12x+18=6x^2-12x+18
=>-12x=-12x
=>0x=0(luôn đúng)
3x-6=3(x-2)
=>3x-6=3x-6
=>0x=0(luôn đúng)
=>Hai phương trình tương đương
1.
a/ \(\Leftrightarrow\left(x+1\right)\left(x^2+3x+2\right)+\left(x-1\right)\left(x^2-3x+2\right)-12=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2\right)+3x\left(x+1\right)-3x\left(x-1\right)+\left(x-1\right)\left(x^2+2\right)-12=0\)
\(\Leftrightarrow2x\left(x^2+2\right)+6x^2-12=0\)
\(\Leftrightarrow x^3+3x^2+2x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+6\right)=0\Rightarrow x=1\)
b/ Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}+3\left(x+\frac{1}{x}\right)+4=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(t^2-2+3t+4=0\Rightarrow t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=-1\\x+\frac{1}{x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+1=0\left(vn\right)\\x^2+2x+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
1c/
\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)
\(\Leftrightarrow x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^4-2x^3+5x^2-2x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^4-2x^3+x^2+x^2-2x+1+3x^2=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+3x^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn
Vậy pt có nghiệm duy nhất \(x=-1\)
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2