K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2022

a/

20202021 có chữ số tận cùng là 0

20212020 có chữ số tận cùng là 1

=> A có chữ số tận cùng là 1 lẻ nên không chia hết cho 2

b/

20201975 có chữ số tận cùng là 0

19752020 có chữ số tận cùng là 5

=> B có chữ số tận cùng là 5 nên chia hết cho 5

DD
2 tháng 3 2021

a) \(M=2020+2020^2+...+2020^{10}\)

\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)

\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)

\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).

b) Bạn làm tương tự câu a). 

2 tháng 3 2021

b, \(A=2021+2021^2+...+2021^{2020}\)

\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)

\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)

Vậy ta có đpcm 

5 tháng 7 2021

vì 2020 chia hết cho 5 , 2021 ko chia hết cho 5 suy ra 2020+2021 ko chia hết cho 5

vì 20255 chia hết cho 5 (do 2025 chia hết cho 5), 20204chia hết cho 5 suy ra  20255 - 20204 chia hêt cho 5

5 tháng 7 2021

A)Nhìn 2 số cuối biết chia hết cho 2 rồi

thì chia hết cho 2

B)KHÔNG chia hết cho 2

Vì 13 = 1        03 = 0           1 với 0 thì không chia hết cho 2

14 tháng 4 2020

a) \(\left(2020^{2019}+1\right)\left(2020^{2019}-1\right)=\left(2020^{2019}\right)^2-1=2020^{4038}-1\)

Ta có: 2020 = 1 mod 3

\(\Rightarrow2020^{2019}\equiv1mod3\)

\(\Rightarrow2020^{4038}-1\equiv0mod3\)

=> đpcm

7 tháng 1 2016

đặt biểu thức ban đầu là A, 42020+42019+...+4+1=B

4B=42021 +42020 +42019+...+42+4

3B=4B-B=42021-1  => B= (42021-1)/3

A=75B+25=75(42021-1)/3 + 25= 25(42021-1)+25=25(42021-1+1)=25.42021=100.42020

=> A chia hết cho cả 100 và 42021

mặt khác A=25.42021=42021.(24+1)=24.42021+42021=6.42022+42021 

vì 42021<42022 nên A chia 42022 dư 42021

tick cho mk nha!!!!!!!!

 

 

11 tháng 6 2020

Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3

Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)

Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3

=> đpcm

10 tháng 2 2019

\(A,\)\(S=\left(3+3^2\right)+\left(3+3^2\right)3^2+...+\left(3+3^2\right)3^{2018} \)

\(\Rightarrow S=9\left(1+3^2+...+3^{2018}\right)\)

\(\Rightarrow S⋮9\)

\(B,\)\(S=3+3^2+3^3+\left(3+3^2+3^3\right)3^3+...\left(3+3^2+3^3\right)3^{2017}\)

\(S=39+39.3^3+...+39.3^{2017}\)

Nhưng xét lại thì thấy 2017 không chia hết cho 3 nên câu b có lẽ sai đề =)))))

\(C,\)\(S=\left(1+3+3^2+3^3\right).3+\left(1+3+3^2+3^3\right).3^4+...+\left(1+3+3^2+3^3\right).3^{2017}\)

\(S=40.3+40.3^4+...+40.3^{2017}\)

\(Vậy...\)

10 tháng 12 2019

1111111111

10 tháng 12 2019

Em kiểm tra lại đề bài nhé. A không chia hết cho 6 đâu em nhé!

A chia hết cho 31. 

Giải:

\(A=\left(5^2+5^3+5^4\right)+...+\left(5^{2018}+5^{2019}+5^{2020}\right)\)

\(=5^2\left(1+5+25\right)+...+5^{2018}\left(1+5+25\right)\)

\(=5^2.31+...+5^{2018}.31\)

\(=31\left(5^2+5^5+...+5^{2018}\right)\)chia hết cho 31