Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) Biến đổi tương đương:
\(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(a+c\right)^3\) (1)
\(\Leftrightarrow\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+6\left(a^3+c^3+b^3\right)\)
\(\ge\left(a^3+b^3\right)+\left(b^3+c^3\right)+\left(a^3+c^3\right)+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)
\(\Leftrightarrow2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\)
\(\Leftrightarrow\left[a^3+b^3-ab\left(a+b\right)\right]+\left[a^3+c^3-ac\left(a+c\right)\right]+\left[b^3+c^3-bc\left(b+c\right)\right]\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+\left(a+c\right)\left(a-c\right)^2+\left(b+c\right)\left(b-c\right)^2\ge0\) luôn đúng do a, b, c > 0
=> (1) đúng
Dấu "=" xảy ra khi a = b = c
4) Ta có: a+b>c ; b+c>a; a+c>b
Xét \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
Tương tự: \(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
Vậy suy ra được điều phải chứng minh
*học ngu chỉ làm được câu b. lười quá nên làm tắt*
Biến đổi thành
4(a3+b3)-(a+b)3+4(a3+b3)-(b+c)3+4(c3+a3)-(c+a)3 >=0
xét 4(a3+b3)-(a+b)3 =(a+b)[4(a2-ab+b2)-(a+b)2]
=3(a+b)(a-b)2 >=0
tương tự với \(\hept{\begin{cases}4\left(b^3+c^3\right)-\left(b+c\right)^3\\4\left(c^3+a^2\right)-\left(a+c\right)^3\end{cases}}\)
=> đpcm
đẳng thức xảy ra khi a=b=c
\(P=12\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{15}+1\right)\)
\(=\frac{1}{2}\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^4-1\right)\left(5^4+1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^8-1\right)\left(5^8+1\right)\left(5^{16}+1\right)\)
\(=\frac{1}{2}\left(5^{16}-1\right)\left(5^{16}+1\right)\)
\(\frac{1}{2}\left(5^{32}+1\right)=\frac{5^{32}+1}{2}\)
a)
Ta có
a chia 5 dư 4
=> a=5k+4 ( k là số tự nhiên )
\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16\)
Vì 25k^2 chia hết cho 5
40k chia hết cho 5
16 chia 5 dư 1
=> đpcm
2) Ta có
\(12=\frac{5^2-1}{2}\)
Thay vào biểu thức ta có
\(P=\frac{\left(5^2-1\right)\left(5^2+1\right)\left(5^4+1\right)\left(5^8+1\right)}{2}\)
\(\Rightarrow P=\frac{\left[\left(5^2\right)^2-1^2\right]\left[\left(5^2\right)^2+1^2\right]\left(5^8+1\right)}{2}\)
\(\Rightarrow P=\frac{\left[\left(5^4\right)^2-1^2\right]\left[\left(5^4\right)^2+1^2\right]}{2}\)
\(\Rightarrow P=\frac{5^{16}-1}{2}\)
3)
\(\left(a+b+c\right)^3=\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3\)
\(=a^3+b^3+c^2+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Áp dụng bất đẳng thức \(4x^3+4y^3\ge\left(x+y\right)^3\) với x, y > 0, ta được:
\(4a^3+4b^3\ge\left(a+b\right)^3\); \(4b^3+4c^3\ge\left(b+c\right)^3\) ; \(4c^3+4a^3\ge\left(c+a\right)^3\).
Cộng từng vế 3 bất đẳng thức trên ta được:
\(4a^3+4b^3+4a^3+4b^3+4c^3+4c^3\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)
\(\Rightarrow8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(c+b\right)^3+\left(a+c\right)^3\)
=> đpcm.
Bài 1 : \(VT=a^2+b^2+c^2+3abc=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)+3abc\left(a+b+c\right)}{a+b+c}\ge\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)+9abc}{a+b+c}\)
\(=\frac{a^3+b^3+c^3+3abc+ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+6abc}{a+b+c}\)
\(\ge\frac{2ab\left(a+b\right)+2bc\left(b+c\right)+2ca\left(c+a\right)+6abc}{a+b+c}\)
\(=\frac{2\left(ab+bc+ca\right)\left(a+b+c\right)}{a+b+c}=6\)
Có sai sót gì xin cmt bên dưới ạ
Câu 1:
Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)
\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)
Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)
\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)
\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)
\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)
Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)
5 , a3+b3+c3\(\ge\) 3abc
\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0
\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)
\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)
ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)
(a-b)2+(b-c)2+(c-a)2\(\ge0\)
<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)
<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)
Từ (1)(2)(3)=> pt luôn đúng
c) Áp dụng BĐT Cauchy-schwars ta có:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{\left(a+b+b\right)^2}{a+b+c}=a+b+c\)
đpcm
a) \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
<=> \(a^4+b^4\ge ab\left(a^2+b^2\right)\)
Ta có: \(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}=\frac{a^2+b^2}{2}.\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\) với mọi a, b
Vậy \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
Dấu "=" xảy ra <=> a = b
b) \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)(1)
<=> \(2\left(a^4+b^4+c^4\right)\ge ab^3+ac^3+ba^3+bc^3+ca^3+cb^3\)
<=> \(\left(a^4+b^4\right)+\left(b^4+c^4\right)+\left(c^4+a^4\right)\ge ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ac\left(a^2+c^2\right)\) đúng áp dụng câu a
Vậy (1) đúng
Dấu "=" xảy ra <=> a = b = c.
1: \(\Leftrightarrow a^5-a^4b+b^5-ab^4>=0\)
\(\Leftrightarrow a^4\left(a-b\right)-b^4\left(a-b\right)>=0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a+b\right)\cdot\left(a^2+b^2\right)>=0\)(luôn đúng khi a,b dương)
Lời giải
Cách giải đơn giản nhất là khai triển
\(3(a^8+b^8+c^8)\geq (a^3+b^3+c^3)(a^5+b^5+c^5)\)
\(\Leftrightarrow 2(a^8+b^8+c^8)\geq a^5(b^3+c^3)+b^5(c^3+a^3)+c^5(a^3+b^3)\)
\(\Leftrightarrow (a^3-b^3)(a^5-b^5)+(b^3-c^3)(b^5-c^5)+(c^3-a^3)(c^5-a^5)\geq 0(\star)\)
Xét \((a^3-b^3)(a^5-b^5)=(a-b)^2(a^2+b^2)(a^4+a^3b+a^2b^2+ab^3+b^4)\geq 0\) với mọi \(a,b>0\)
và tương tự với các biểu thức còn lại.
Suy ra BĐT \((\star)\) luôn đúng.
Ta có đpcm
Đây chính là một dạng của BĐT Chebyshev:
Với dãy số thực \(a_1\leq a_2\leq ....\leq a_n\) . Nếu tồn tại dãy số thực\(b_1\leq b_2\leq .... \leq b_n\) thì \(n(a_1b_1+a_2b_2+....+a_nb_n)\geq (a_1+a_2+...+a_n)(b_1+b_2+...+b_n)\)
Câu 2:
Tương tự câu 1 thôi.
Do \(a+b=2\) nên bài toán tương đương: \(2(a^8+b^8)\geq (a^7+b^7)(a+b)\)
\(\Leftrightarrow a^8+b^8\geq a^7b+ab^7\Leftrightarrow (a^7-b^7)(a-b)\geq 0\)
\(\Leftrightarrow (a-b)^2(a^6+a^5b+....+ab^5+b^6)\geq 0(\star)\)
Xét \(Q=a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6\)
\(Q=(a+b)(a^5+b^5)+a^2b^2(a^2+b^2+ab)\)
Dựa vào điều kiện \(a+b=2\) và biến đổi, ta thu được \(Q=16(2-ab)^2-8ab(2-ab)-a^3b^3\)
Đặt \(ab=t\Rightarrow Q=-t^3+24t^2-80t+64\)
\(\Leftrightarrow Q=(1-t)(t-8)^2+7t^2\)
Với mọi \(a,b\in\mathbb{R}\) ta luôn có \(ab\leq \frac{(a+b)^2}{4}\Rightarrow t\leq 1\). Do đó \(Q\geq 0\)
Kéo theo BĐT \((\star)\) luôn đúng, bài toán luôn đúng. Do đó ta có đpcm.