K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

1)

\(M=\dfrac{1}{3}x^2+2x+10\)

\(=\dfrac{1}{3}.\left(x^2+6x+30\right)\)

\(=\dfrac{1}{3}\left(x^2+2.x.3+9\right)+7\)

\(=\dfrac{1}{3}.\left(x+3\right)^2+7\) \(\ge\) 7 với \(\forall\) x

=> M luôn dương

=> đpcm

2)

a) \(2x-x^2-15\)

\(=-\left(x^2-2x+15\right)\)

\(=-\left(x^2-2x+1\right)-14\)

\(=-\left(x-1\right)^2-14\) \(\le-14\) với \(\forall\) x

=> \(2x-x^2-15\) luôn âm

=> đpcm

b) \(-5-\left(x-1\right)\left(x+2\right)\)

\(=-5-x^2-2x+x+2\)

\(=-x^2-x-3\)

\(=-\left(x^2+x+3\right)\)

\(=-\left(x^2+2.\dfrac{1}{2}.x+\dfrac{1}{4}\right)-\dfrac{11}{4}\)

\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\) với \(\forall\) x

=> \(-5-\left(x-1\right)\left(x+2\right)\) luôn âm

=> đpcm

26 tháng 7 2017

\(M=\dfrac{1}{3}x^2+2x+10=\dfrac{1}{3}\left(x^2+6x+9\right)+7\)

\(=\dfrac{1}{3}\left(x+3\right)^2+7\)

Ta có:

\(\dfrac{1}{3}\left(x+3\right)^2\ge\forall x\Rightarrow\dfrac{1}{3}\left(x+3\right)^2+7>0\)

=>đpcm

\(2,a,2x-x^2-15\)

\(=-\left(x^2-2x+1\right)-14\)

\(=-\left(x-1\right)^2-14\)

Ta có:

\(-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-14< 0\)

=> đpcm

\(b,-5-\left(x-1\right)\left(x+2\right)\)

\(=-5-\left(x^2+x-2\right)\)

\(=-5-x^2-x+2\)

\(=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{11}{4}\)

\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{11}{4}\)

Ta có:

\(-\left(x+\dfrac{1}{2}\right)^2\le0\forall x\Rightarrow-\left(x+\dfrac{1}{2}\right)-\dfrac{11}{4}< 0\)=> đpcm

13 tháng 7 2017

a, \(\dfrac{\left(x+5\right)^2+\left(x-5\right)^2}{x^2+25}=\dfrac{x^2+10x+25+x^2-10x+25}{x^2+25}\)

\(=\dfrac{2\left(x^2+25\right)}{x^2+25}=2\forall x\)

\(\Rightarrowđpcm\)

b, \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)

\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)

\(=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\forall x\)

\(\Rightarrowđpcm\)

13 tháng 7 2017

thank you : <3

a: \(=6x^2-9x+14x-21-4x^2+20x-25-2x\left(x+6\right)+5-31x\)

\(=2x^2-6x-41-2x^2-12x\)

=-18x-41

b: \(=2x^2-6x-2x^2+6x+14=14\)

c: \(=x^3+1-x^3+1=2\)

12 tháng 9 2017

Đăng ít thôi.

12 tháng 9 2017

Liên quan à!!!

6 tháng 6 2016

a/ \(=8x^3+2x^2-8x^3-8x^2-8x^3-2x+3=-8x^3-6x^2-2x+3\)

b/ \(=3x^2+12x-7x+20+2x^3-3x^2-2x^3-5x=20\)

Biểu thức A phụ thuộc vào x còn B thì không.

21 tháng 4 2017

1. \(\left|x+5\right|-\left|1-2x\right|=x\left(1\right)\)

Với phương trình kiểu này thì phải lập bảng để xét dấu của x+5 và 1-2x ta có nghiệm của hai nhị thức để chúng bằng 0 lần lượt là -5 và 0,5. Bảng xét dấu:

Bất phương trình bậc nhất một ẩn

Ứng với bảng ta có 3 khoảng giá trịn của x ứng với ba phương trình sau.

* Với \(x< -5\) (khoảng đầu)

\(\left(1\right)\Leftrightarrow-\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow-x+2x-x=5+1\\ \Leftrightarrow0x=6\)

Phương trình vô nghiệm.

* Với \(-5\le x\le0,5\) (khoảng giữa)

\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(1-2x\right)=x\\ \Leftrightarrow x+2x-x=1-5\\ \Leftrightarrow x=-2\)

\(x=-2\) thỏa mãn điều kiện nên ta lấy.

* Với \(x>0,5\) (khoảng cuối)

\(\left(1\right)\Leftrightarrow\left(x+5\right)-\left(2x-1\right)=x\\ \Leftrightarrow x-2x-x=-5-1\\\Leftrightarrow x=3 \)

\(x=3\) thỏa nãm điều kiện nên ta lấy.

Kết luận tập nghiệm của phương trình (1) là: \(S=\left\{-2;3\right\}\)

21 tháng 4 2017

Chứng minh bất đẳng thức:

\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\\ \Rightarrow2a^2+2b^2\ge a^2+2ab_{ }+b^2\\ \Leftrightarrow2a^2+2b^2-a^2-b^2-2ab\ge0\\ \Leftrightarrow a^2-2ab+b^2\ge0\\\Leftrightarrow\left(a-b\right)^2\ge0\left(1\right)\)

Vì BĐT (2) luôn đúng với mọi a,b do đó ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

16 tháng 9 2018

T ko biết làm, chỉ hỏi liên thiên thôi :)))

Hủ phải không???? OvO Dưa Trong Cúc

16 tháng 9 2018

- Ko lẽ t có đồg bọn =))

10 tháng 10 2019

mẹo của những câu này là: kết quả cuối cùng LUÔN LÀ HỆ SỐ TỰ DO

câu a ta thấy 3(x^2-8y^3+10) có 3x10 là hstd => 30

b:có hstd 1 ở (2x-1)(x^2+x-1) 25 ở bt(x-5)^2 và hstd 2 ở 2(x+1)(x^2-x+1) và 14 ở -7(x-2)

->hstd là 1+25+2+14=42

mấy cái tách thì khai triển hết ra rồi loại hết đi :v

nếu mình nhìn thiếu gì thì bạn bỏ qua cho mn nhé. đây chỉ là mẹo thôi

mn sắp thi r. chào b. chúc b học tốt

Câu 1:

a. \(\left(x-1\right)\left(x+2\right)-x^2+3=5\)

\(x^2+2x-x-2-x^2+3=5\)

\(x+1=5\)

\(x=4\)

b. \(\left(2x+1\right)\left(x-3\right)-2x\left(x+7\right)=100\)

\(2x^2-6x+x-3-2x^2-14x=100\)

\(-19x-3=100\)

\(x=\frac{103}{-19}\)

\(x=-7\)

c. \(\left(3x-1\right)\left(x+2\right)-\left(2-3x\right)\left(x+3\right)=12\)

\(3x^2+6x-x-2-\left(2x+6-3x^2-9x\right)=12\)

\(3x^2+6x-x-2-2x-6+3x^2+9x=12\)

\(6x^2+12x-8=12\)

\(6x^2+12x=20\)

Câu 2:

\(\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)

\(=2x^2+3x-10x-15-2x^2+6x+x+7\)

\(=-8\) (không phụ thuộc vào biến)