Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\text{VT}=\frac{1}{1.2}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=\frac{2-1}{1.2}+\frac{4-3}{3.4}+....+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{50}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}....+\frac{1}{50}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}-\left(1+\frac{1}{2}+\frac{1}{3}....+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{49}+\frac{1}{50}\)
Do đó ta có đpcm.
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{5}-\dfrac{1}{6}\)
= 1 - \(\dfrac{1}{6}\)
= \(\dfrac{5}{6}\)
Bạn Huyền Nguyễn làm đúng òi. Bạn có thể xem cách giải cụ thể hơn ở sách bài tập nâng cao và một số chuyên đề toán 6 nhá!Trang 79. Ngày trước tớ cũng học mãi mới hiểu
\(a)3\dfrac{1}{2}.\dfrac{4}{49}-\left[2,\left(4\right):2\dfrac{5}{11}\right]:\left(\dfrac{-42}{5}\right)\)
\(=\dfrac{7}{2}.\dfrac{4}{49}-\dfrac{88}{27}:\left(\dfrac{-42}{7}\right)\)
\(=\dfrac{2}{7}-\dfrac{-220}{567}\)
\(=\dfrac{382}{567}\)
các phần con lại dễ nên bn tự lm đi nhé mk bn lắm
Chúc bạn học tốt!
a: =>x/3=-5/2
hay x=-15/2
b: \(\Leftrightarrow\dfrac{7}{3}:x=\dfrac{1}{5}-\dfrac{4}{9}=\dfrac{9-20}{45}=\dfrac{-11}{45}\)
\(\Leftrightarrow x=\dfrac{7}{3}:\dfrac{-11}{45}=\dfrac{7}{3}\cdot\dfrac{-45}{11}=\dfrac{-105}{11}\)
c: \(\Leftrightarrow x=\dfrac{-7}{2}\cdot2=-7\)
d: =>x/27=-1/3+2/9=2/9-3/9=-1/9=-3/27
=>x=-3
Giải:
a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)
\(\Leftrightarrow x=\dfrac{-63}{10}\)
Vậy ...
b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-4}{11}\)
Vậy ...
Các câu sau làm tương tự câu b)
a: \(\Leftrightarrow-\dfrac{2}{3}\cdot\dfrac{4-6-9}{12}\ge x\ge-\dfrac{13}{3}\cdot\dfrac{3-1}{6}\)
\(\Leftrightarrow-\dfrac{2}{3}\cdot\dfrac{-11}{12}\ge x\ge\dfrac{-13}{3}\cdot\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{22}{36}\ge x\ge\dfrac{-13}{9}\)
mà x là số nguyên
nên \(x\in\left\{0;-1\right\}\)
b: \(\Leftrightarrow\dfrac{21}{100}+\dfrac{75}{100}-\dfrac{220}{100}>=2x-1>=-3-\dfrac{1}{2}+3+\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{-124}{100}\ge2x-1\ge\dfrac{-3}{10}\)
\(\Leftrightarrow-\dfrac{124}{100}+1\ge2x>=\dfrac{-3}{10}+1\)
\(\Leftrightarrow\dfrac{-3}{25}\ge2x\ge\dfrac{7}{10}\)(vô lý)
=>x không có giá trị
c: \(\Leftrightarrow43+\dfrac{1}{2}-39-\dfrac{1}{5}\le-3x+4\le9+\dfrac{1}{5}+50+\dfrac{1}{7}\)
\(\Leftrightarrow3+\dfrac{3}{10}\le-3x+4\le59+\dfrac{12}{35}\)
\(\Leftrightarrow\dfrac{33}{10}-4\le-3x\le59+\dfrac{12}{35}-4\)
\(\Leftrightarrow\dfrac{-7}{10}\le-3x\le\dfrac{1937}{35}\)
\(\Leftrightarrow\dfrac{7}{30}\ge x\ge-\dfrac{1937}{105}\)
mà x là số nguyên
nên \(x\in\left\{0;-1;-2;...;-18\right\}\)
Bài 2:
a: =>x^2=60
=>\(x=\pm2\sqrt{15}\)
b: =>2^2x+3=2^3x
=>3x=2x+3
=>x=3
c: \(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}\cdot\dfrac{1}{2}=1\)
\(\Leftrightarrow\sqrt{\dfrac{1}{2}x-2}=2\)
=>1/2x-2=4
=>1/2x=6
=>x=12
a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)
\(\Rightarrowđpcm\)
d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)
\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)
\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)
\(\Rightarrowđpcm\)
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
\(\Rightarrowđpcm\)
\(LINH_1=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+....+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+....+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{25}\right)\)\(=\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}=LINH_2\left(đpcm\right)\)