Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: (2a-2b)2 lớn hơn hặc bằng 0
<=> 4a2-8ab+4b2 lớn hơn hoặc bằng 0
<=> 5a2-a2-8ab+20b2-16b2 lớn hơn hoặc bằng 0
<=> 5a2+20b2 lớn hơn hoặc bằng a2+8ab+16b
<=> 5(a2+4b2) lớn hơn hoặc bằng (a+4b)2
<=> 5(a2+4b2) lớn hơn hoặc bằng 1 [ Thay (a+4b)2 =1]
3)
\(a=b+1\Leftrightarrow a+1>b+1\Leftrightarrow a>b+1-1\\ \Leftrightarrow a>b\)
\(x+y=1\)
Áp dụng BĐT AM-GM, ta có:
\(\dfrac{x^2}{1}+\dfrac{y^2}{1}\ge\dfrac{\left(x+y\right)^2}{2}=\dfrac{1^2}{2}=\dfrac{1}{2}\)
--> \(x^2+y^2\ge\dfrac{1}{2}\)
\(a,VT=\left(a^2-1\right)^2+4a^2\\ =a^4-2a^2+1+4a^2\\ =a^4+2a^2+1\\ =\left(a^2+1\right)^2 =VP\\ b,VT=\left(x-y\right)^2+\left(x+y\right)^2+2\left(x^2-y^2\right)\\ =x^2-2xy+y^2+x^2+y^2+2xy+2x^2-2y^2\\ =4x^2=VP\)
Với mọi a, b ta có :
( a - b) ² >= 0
<=> a² - 2ab + b² >= 0
<=> a² + b² >=2ab
<=> 2 ( a² + b² ) >= a² +2ab + b²
<=> 2 (a² + b² ) >= ( a + b )² mà a+b=1 nên 2 ( a² + b² ) >=1
<=> a² + b² >= 1/2
Dấu “ = " xảy ra khi và chỉ khi : a=b mà a+b=1 nên a=b=1/2
nha!!!
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2=1\)(Vì a+b=1)
\(\Leftrightarrow a^2+b^2\ge\frac{1}{2}\)(Chia 2 vế cho 2)
Dấu '=' xảy ra khi a=b=1/2
Tớ ko biết làm, xin lỗi nhé!