Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}A = 0,2\left( {5{\rm{x}} - 1} \right) - \dfrac{1}{2}\left( {\dfrac{2}{3}x + 4} \right) + \dfrac{2}{3}\left( {3 - x} \right)\\A = x - 0,2 - \dfrac{1}{3}x - 2 + 2 - \dfrac{2}{3}x\\ = \left( {x - \dfrac{1}{3}x - \dfrac{2}{3}x} \right) + \left( {\dfrac{{ - 1}}{2} - 2 + 2} \right)\\ = - \dfrac{1}{2}\end{array}\)
Vậy \(A = - \dfrac{1}{2}\) không phụ thuộc vào biến x
b)
\(\begin{array}{l}B = \left( {x - 2y} \right)\left( {{x^2} + 2{\rm{x}}y + 4{y^2}} \right) - \left( {{x^3} - 8{y^3} + 10} \right)\\B = \left[ {x - {{\left( {2y} \right)}^3}} \right] - {x^3} + 8{y^3} - 10\\B = {x^3} - 8{y^3} - {x^3} + 8{y^3} - 10 = - 10\end{array}\)
Vậy B = -10 không phụ thuộc vào biến x, y.
c)
\(\begin{array}{l}C = 4{\left( {x + 1} \right)^2} + {\left( {2{\rm{x}} - 1} \right)^2} - 8\left( {x - 1} \right)\left( {x + 1} \right) - 4{\rm{x}}\\{\rm{C = 4}}\left( {{x^2} + 2{\rm{x}} + 1} \right) + \left( {4{{\rm{x}}^2} - 4{\rm{x}} + 1} \right) - 8\left( {{x^2} - 1} \right) - 4{\rm{x}}\\C = 4{{\rm{x}}^2} + 8{\rm{x}} + 4 + 4{{\rm{x}}^2} - 4{\rm{x}} + 1 - 8{{\rm{x}}^2} + 8 - 4{\rm{x}}\\C = \left( {4{{\rm{x}}^2} + 4{{\rm{x}}^2} - 8{{\rm{x}}^2}} \right) + \left( {8{\rm{x}} - 4{\rm{x}} - 4{\rm{x}}} \right) + \left( {4 + 1 + 8} \right)\\C = 13\end{array}\)
Vậy C = 13 không phụ thuộc vào biến x
2) 1/x - 1/y - 1/z = 1
=> (1/x - 1/y - 1/z)^2 = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2/xy - 2/xz + 2/yz = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(1/xy + 1/xz - 1/yz) = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.(z+y-x/xyz) = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 - 2.0 = 1
<=> 1/x^2 + 1/y^2 + 1/z^2 = 1 (đpcm)
Đáng lẽ là bé hơn hoặc bằng
(ax + by)2 = a2x2 + 2axby + b2y2
(a2 + b2)(x2 + y2) = a2x2 + a2y2 + b2x2 + b2y2
Ta cần chứng minh:
\(2axby\le b^2x^2+a^2y^2\)'
\(\Leftrightarrow0\le b^2x^2-2aybx+a^2y^2\)
<=> 0 \(\le\)(bx - ay)2 (đúng)
Vậy bđt đc chứng minh
a)Áp dụng BĐT AM-GM ta có:
\(\left(\sqrt{x}+\sqrt{y}\right)^2=x+y+2\sqrt{xy}\)
\(\ge2\sqrt{\left(x+y\right)\cdot2\sqrt{xy}}=VP\)
Xảy ra khi \(x=y\)
b)\(BDT\Leftrightarrow x+y+z+t\ge4\sqrt[4]{xyzt}\)
Đúng với AM-GM 4 số
Xảy ra khi \(x=y=z=t\)
Bài 3:
x=y+1 nên x-y=1
\(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(=\left(x+y\right)\cdot\left(x-y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
=x^8-y^8
em bình phương cả 2 vế lên, chuyển tất cả sang 1 vế rồi biến đổi sẽ ra 1 số a2 và nó chắc chắn lớn hơn hoặc bằng 0
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^2+\frac{1}{x}\ge2\sqrt[2]{\frac{x^2}{x}}=2.\sqrt{x}\)
\(y^2+\frac{1}{y}\ge2\sqrt[2]{\frac{y^2}{y}}=2.\sqrt{y}\)
Cộng vế với vế ta được :
\(x^2+y^2+\frac{1}{x}+\frac{1}{y}\ge2.\sqrt{x}+2.\sqrt{y}=2\left(\sqrt{x}+\sqrt{y}\right)\)
Vậy ta có điều phải chứng mình
Ta đi chứng minh:\(a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)* đúng *
Khi đó:
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
Tương tự:
\(\frac{1}{b^3+c^3+abc}\le\frac{a}{abc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{b}{abc\left(a+b+c\right)}\)
\(\Rightarrow LHS\le\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)