\(x^2+xa+b=0\). Và x0 là nghiệm phương trình. Chứng minh:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Ta có: 

y02 + ay0 + b = 0

\(\Leftrightarrow\)y04 = (ay0 + b)2

\(\le\)(a2 + b2)(y02 + 1)

\(\Rightarrow\)y04 - 1 < (a2 + b2)(y02 + 1)

\(\Rightarrow\)y02 - 1 < a2 + b2

\(\Rightarrow\)y02 < 1 + a2 + b2

1 tháng 10 2017

3/ Dễ thấy \(0\le x,y,z\le1\)

Ta có:

x2 + y2 + z2 = x3 + y3 + z3

\(\Leftrightarrow\)x2(1 - x) + y2(1 - y) + z2(1 - z) = 0

Dấu =  xảy ra khi (x, y, z) = (0,0,1) và các hoán vị của nó

9 tháng 4 2022

Cái đầu tiên là \(\sqrt[n]{\frac{a_1^n+a_2^n+a_3^n+...+a_n^n}{n}}\)nhé.

Câu 1: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).Câu 4: Cho \(a,b,c,d>0\). Chứng minh...
Đọc tiếp

Câu 1Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\).

Câu 2: Cho \(a,b,c,d>0\)và \(a+b+c+d=4\). Chứng minh rằng:

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+d^2}+\frac{d}{1+a^2}\ge2\).

Câu 3: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+d^2}+\frac{d^3}{d^2+a^2}\ge\frac{a+b+c+d}{2}\).

Câu 4: Cho \(a,b,c,d>0\). Chứng minh rằng:

\(\frac{a^4}{a^3+2b^3}+\frac{b^4}{b^3+2c^3}+\frac{c^4}{c^3+2d^3}+\frac{d^4}{d^3+2a^3}\ge\frac{a+b+c+d}{3}\).

Câu 5: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a^2}{a+2b^2}+\frac{b^2}{b+2c^2}+\frac{c^2}{c+2a^2}\ge1\).

Câu 6: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng: 

\(\frac{a^2}{a+2b^3}+\frac{b^2}{b+2c^3}+\frac{c^2}{c+2a^3}\ge1\).

Câu 7: Cho \(a,b,c>0\)và \(a+b+c=3\). Chứng minh rằng:

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Câu 8: Cho \(a_1,a_2,...,a_{n-1},a_n>0\)và \(a_1+a_2+...+a_{n-1}+a_n=n\)với \(n\)nguyên dương. Chứng minh:

\(\frac{1}{a_1+1}+\frac{1}{a_2+1}+...+\frac{1}{a_{n-1}+1}+\frac{1}{a_n+1}\ge\frac{n}{2}\).

 

 

0

Áp dụng bất đẳng thức Cô - si với n số dương ta được 

\(a_1+a_2+...+a_n\ge n\sqrt[n]{a_1.a_2....a_n}\)

\(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\ge n\sqrt[n]{\frac{1}{a_1}.\frac{1}{a_2}....\frac{1}{a_n}}\)

Suy ra \(\left(a_1+a_2+...+a_n\right)\left(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_n}\right)\ge n^2.\sqrt[n]{1}=n^2\)

(dấu "=" xẩy ra <=> a1=a2 =...=an)

11 tháng 9 2017

Theo bat dang thuc cauchy ta co

a1+a2+...+an lon hon hoc bang n.can bac n cua (a1.a2....an) (1)

1/a1+1/a2...1/an lon hon hoac bang n.1/can bac n cua (a1.a2...an) (2)

Nhan 2 ve (1) va (2) ta duoc

(a1+a2+...+an).(1/a1+1/a2+...1/an) lon hon hoac bang n tren ​​2

=>1/a1+1/a2+...1/an lon hon hoac bang n tren 2/a1+a2+...+an

Dau bang xay ra khi a1=a2=...=an

Mk giai co hieu ko