K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

Gán:

\(\sqrt{2}-1\) Shift STO A

\(1\) Shift STO D

Ghi trên màn hình máy tính : D= D +1: \(A=\frac{A-1}{A+1}\)

Bấm CALC và ấn " = " liên tục. D chính là n.

Tự để ý kết quả D chỉ xoay quanh 4 kết quả trong đó có 2 kết quả trị tuyệt đối bằng nhau. Tự suy ra x 2018 = \(1-\sqrt{2}\)

23 tháng 3 2018

không hỉu

NV
16 tháng 5 2019

\(\Delta'=2-m\ge0\Rightarrow m\le2\)

Kết hợp Viet và điều kiện đề bài ta có hệ: \(\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.\)

Mặt khác ta có \(x_1x_2=m-1\Rightarrow m-1=-35\Rightarrow m=-34\)

\(\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{1}{x_1}+\frac{1}{x_2}\\y_1y_2=\left(x_1+\frac{1}{x_2}\right)\left(x_2+\frac{1}{x_1}\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2+\frac{x_1+x_2}{x_1x_2}\\y_1y_2=x_1x_2+\frac{1}{x_1x_2}+2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-2-\frac{2}{m-1}=\frac{-2m}{m-1}\\y_1y_2=m-1+\frac{1}{m-1}+2=\frac{m^2}{m-1}\end{matrix}\right.\) (\(m\ne1\))

Theo Viet đảo, \(y_1;y_2\) là nghiệm của:

\(y^2+\frac{2m}{m-1}y+\frac{m^2}{m-1}\Leftrightarrow\left(m-1\right)y^2+2my+m^2=0\) \(\left(m\ne1\right)\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

Ta thấy:

\(\Delta=(m-3)^2+4(2m+1)=m^2+2m+13=(m+1)^2+12>0, \forall m\in\mathbb{R}\)

Do đó PT luôn có 2 nghiệm phân biệt với mọi $m$

Áp đụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=3-m\\ x_1x_2=-2m-1\end{matrix}\right.\)

Khi đó:

\(A=4x_1^2-x_1^2x_2^2+4x_2^2+x_1x_2\)

\(=4(x_1^2+x_2^2+2x_1x_2)-(x_1x_2)^2-7x_1x_2\)

\(=4(x_1+x_2)^2-(x_1x_2)^2-7x_1x_2\)

\(=4(3-m)^2-(-2m-1)^2-7(-2m-1)\)

\(=42-14m\)

Bạn muốn chứng minh biểu thức A thế nào???

28 tháng 5 2019

Đề này bị nhầm đấy cậu ahh

4 tháng 4 2020
https://i.imgur.com/Gu2x8wy.jpg
NV
6 tháng 4 2019

\(x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow16-2x_1x_2=10\Rightarrow x_1x_2=3\)

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=3\end{matrix}\right.\) theo Viet đảo, chúng là nghiệm của pt:

\(x^2-4x+3=0\)

2 tháng 4 2020
https://i.imgur.com/oWedGvg.jpg
2 tháng 4 2020

mik cần gấp lắm, mai có rồi giúp mik với

4 tháng 4 2020
https://i.imgur.com/mGWXjaQ.jpg
4 tháng 4 2020
https://i.imgur.com/4rWLFSw.jpg
27 tháng 2 2019

a) \(\Delta'=1^2-m^2+3m=-\left(m^2-3m-1\right)\)

PT có 2 nghiệm PB \(\Leftrightarrow-\left(m^2-3m-1\right)>0\)

\(m^2-3m-1< 0\Leftrightarrow\left(m-\dfrac{3}{2}\right)^2>\dfrac{15}{4}\)

\(m-\dfrac{3}{2}>\dfrac{\sqrt{15}}{2}\Rightarrow m>\dfrac{\sqrt{15}+3}{2}\)

b) Vi-ét

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4-2m^2+6m\)

\(\Rightarrow-2m^2+6m+4=8\)

Tính m ra

c) \(x^2_1+x^2_2=-2m^2+6m+4\)

\(=-2\left(m^2-3m-2\right)\)

\(=-2\left(m-\dfrac{3}{2}\right)^2-\dfrac{17}{4}\)

Lập luận để tìm ra GTNN