Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xem ở Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
b) Ta có: \(\frac{x^3}{8}=\frac{y^3}{27}=\frac{z^3}{64}\)
\(\Leftrightarrow\left(\frac{x}{2}\right)^3=\left(\frac{y}{3}\right)^3=\left(\frac{z}{4}\right)^3\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
mà x+y+z=-18
nên Áp dụng Tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{-18}{9}=-2\)
Do đó:
\(\left\{{}\begin{matrix}\frac{x}{2}=-2\\\frac{y}{3}=-2\\\frac{z}{4}=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=-6\\z=-8\end{matrix}\right.\)
Vậy: (x,y,z)=(-4;-6;-8)
a) đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow a=b.k;c=d.k\)
\(\frac{3a+2c}{3b+2d}=\frac{3b.k+2.d.k}{3b+2d}=\frac{k\left(3b+2d\right)}{3b+2d}=k\)
b) bó tay
1. Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=5k\\z=7k\end{cases}}\)Thay vào biểu thức A
\(\Rightarrow A=\frac{2k-5k+7k}{2k+2.5k-7k}=\frac{4k}{5k}=\frac{4}{5}\)
2. Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\Leftrightarrow\frac{2a}{2c}=\frac{5b}{5d}\Leftrightarrow\frac{3a}{3c}=\frac{4b}{4d}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
+) \(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)(1)
+) \(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)(2)
Từ (1), (2) \(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)(đpcm)