K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: Xét ΔCED vuông tai E và ΔCAB vuông tại A có

góc C chung

Do đo: ΔCED\(\sim\)ΔCAB

Suy ra: CE/CA=CD/CB

hay \(CA\cdot CD=CE\cdot CB=2CE^2\)

b: EC=BC/2=20(cm)

Ta có: CE/CA=CD/CB

nên 20/32=CD/40

=>CD/40=5/8

=>CD=25(cm)

AD=AC-CD=32-25=7(cm)

1 tháng 5 2021

A B C 25 H E D

a, Xét tam giác EHA và tam giác HBA ta có ; 

^HEA = ^BHA = 900

^A _ chung 

Vậy tam giác EHA ~ tam giác HBA ( g.g ) (1) 

Xét tam giác HBA và tam giác BCA ta có : 

^BHA = ^CAB = 900

^A _ chung 

Vậy tam giác HBA ~ tam giác BCA ( g.g ) (2) 

Từ (1) ; (2) suy ra : tam giác EHA ~ tam giác ACB 

1 tháng 5 2021
a) Ta có góc AHE +góc HAE=90°(∆HAE có E=90°) Góc HAE+ góc C=90° Suy ra góc AHE=góc C Xét 2tam giác EHA và ACB có Góc EHA=C Góc E= góc A =90° Suy ra 2 tam giác đồng dạng(g.g) Chứng minh ADHE là HCM => Các cạnh đối bằng nhau =>AD=EH Từ 2 tam giác đã cm ở câu trên =>EH/EA=AC/AB Mà EH=AD=>AD/AE=AC/AB (¹) Xét ∆ADE và ∆ACD có Góc A chung Tỉ số (¹) => ∆ADE đồng dạng ∆ACB(c.g.c) b)Vì ADHE là HCM ( câu a) =>DE=AH( đg chéo) Saed/Sabc=(DE/BC)² Vì DE=AH =>Saed/Sabc=(10/25)²=4/25 Sabc=AH.BC/2=10.25/2=125 Vì Saed/Sabc=4/25 thay Sabc =125 =>Saed=125*4/25=20(cm²)
17 tháng 5 2020

AMAM là đường trung tuyến ứng với cạnh huyền nên AM=BC2=BMAM=BC2=BM

⇒△MAB⇒△MAB cân tại MM

⇒BAMˆ=MBAˆ⇒BAM^=MBA^

Ta có:

BADˆ=DAMˆ−BAMˆ=900−MBAˆ=900−HBAˆBAD^=DAM^−BAM^=900−MBA^=900−HBA^

HABˆ=900−HBAˆHAB^=900−HBA^

⇒BADˆ=HABˆ⇒BAD^=HAB^ nên ABAB là tia phân giác DAHˆDAH^ (đpcm)

b)

Xét tam giác CADCAD và ABDABD có:

DˆD^ chung

ACDˆ=900−ABHˆ=BADˆACD^=900−ABH^=BAD^

⇒△CAD∼△ABD⇒△CAD∼△ABD (g.g)

⇒CAAB=ADBD=CDAD⇒CAAB=ADBD=CDAD

⇒CA2AB2=CDBD(∗)⇒CA2AB2=CDBD(∗)

Dễ thấy △BAH∼△BCA△BAH∼△BCA (g.g) và △CAH∼△CBA△CAH∼△CBA (g.g)

⇒BABC=BHBA⇒BABC=BHBA và CACB=CHCACACB=CHCA

⇒AB2=BC.BH⇒AB2=BC.BH và AC2=CH.BCAC2=CH.BC

⇒AC2AB2=CHBH(∗∗)⇒AC2AB2=CHBH(∗∗)

Từ (∗);(∗∗)⇒CDBD=CHBH(∗);(∗∗)⇒CDBD=CHBH

⇒CD.BH=CH.BD⇒CD.BH=CH.BD (đpcm)

26 tháng 5 2020

chij vào vndoc á xong rùi kéo xuống nó vẹ cho

24 tháng 5 2020

a, Xét △ABC vuông tại A và △MDC vuông tại M

Có: ∠ACB là góc chung

=> △ABC ᔕ △MDC (g.g)

b, Xét △ABC vuông tại A có: AB2 + AC2 = BC2 (định lý Pytago)

=> 362 + 482 = BC2  => BC2 = 3600 => BC = 60 (cm)

Vì M là trung điểm BC (gt) => MB = MC =  BC : 2 = 60 : 2 = 30 (cm)

Vì △ABC ᔕ △MDC (cmt) \(\Rightarrow\frac{AB}{MD}=\frac{AC}{MC}\) \(\Rightarrow\frac{36}{MD}=\frac{48}{30}\)\(\Rightarrow MD=\frac{36.30}{48}=22,5\) (cm)

và \(\frac{AC}{MC}=\frac{BC}{DC}\)\(\Rightarrow\frac{48}{30}=\frac{60}{DC}\)\(\Rightarrow DC=\frac{30.60}{48}=37,5\) (cm)

c, Xét △BME vuông tại M và △BAC vuông tại A

Có: ∠MBE là góc chung

=> △BME ᔕ △BAC (g.g)

\(\Rightarrow\frac{BM}{AB}=\frac{BE}{BC}\) \(\Rightarrow\frac{30}{36}=\frac{BE}{60}\)\(\Rightarrow BE=\frac{30.60}{36}=50\) (cm)

 Vì M là trung điểm BC (gt) mà ME ⊥ BC (gt)

=> ME là đường trung trực BC

=> EC = BE

Mà BE = 50 (cm)

=> EC = 50 (cm)

e, Ta có: \(\frac{S_{\text{△}MDC}}{S_{\text{△}ABC}}=\frac{\frac{1}{2}.MD.MC}{\frac{1}{2}.AB.AC}=\frac{22,5.30}{36.48}=\frac{675}{1728}=\frac{25}{64}\)

P/s: Sao nhiều câu cùng tính EC vậy? Pls, không làm loãng câu hỏi

Bài làm 

@Mấy bạn bên dưới: nghiêm cấm không trả lời linh tinh, nhất bạn luffy toán học, bạn rảnh đến nỗi cũng hùa theo họ mà spam linh tinh à. 

a) Xét tam giác ABC và tam giác MDC có:

\(\widehat{BAC}=\widehat{DMC}=90^0\)

\(\widehat{BCA}\)chung

=> Tam giác ABC ~ tam giác MDC ( g - g )

b) Xét tam giác ABC vuông tại A có:

Theo pytago có:

BC2 = AB2 + AC2 

hay BC2 = 362 + 482 

hay BC2 = 1296 + 2304

=> BC2 = 3600

=> BC = 60 ( cm )

Mà M là trung điểm BC
=> BM = MC = BC/2 = 60/2 = 30 ( cm )

Vì tam giác ABC ~ tam giác MDC ( cmt )

=> \(\frac{AB}{MD}=\frac{BC}{DC}=\frac{AC}{MC}\)

hay \(\frac{36}{MD}=\frac{60}{DC}=\frac{48}{30}\)

=> \(MD=\frac{36.30}{48}=22,5\left(cm\right)\)

=> \(DC=\frac{60.30}{48}=37,5\left(cm\right)\)

c) Xét tam giác MBE và tam giác ABC có:

\(\widehat{BME}=\widehat{BAC}=90^0\)

\(\widehat{ABC}\)chung

=> Tam giác MBE ~ tam giác ABC ( g - g )

=> \(\frac{ME}{AC}=\frac{BM}{AB}\)

hay \(\frac{ME}{48}=\frac{30}{36}\Rightarrow ME=\frac{48.30}{36}=40\left(cm\right)\)

Xét tam giác MEC vuông tại M có:

EC2 = MC2 + ME2 

hay EC2 = 302 + 402 

=> EC2 = 900 + 1600

=> EC2 = 50 ( cm )

a) Vì tam giác MDC ~ Tam giác ABC

=> \(\frac{S_{\Delta MDC}}{S_{\Delta ABC}}=\left(\frac{MD}{AB}\right)^2=\left(\frac{22,5}{36}\right)^2=\left(\frac{5}{8}\right)^2=\frac{25}{36}\)

Câu c, d và câu đ giống nhau ?