Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AB=\sqrt{3\cdot15}=3\sqrt{5}\left(cm\right)\)
\(AC=\sqrt{12\cdot15}=6\sqrt{5}\left(cm\right)\)
b: \(\dfrac{HF}{HE}=\dfrac{AE}{AF}=\dfrac{AH^2}{AB}:\dfrac{AH^2}{AC}=\dfrac{AC}{AB}=2\)
=>HF=2HE
a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=16\)
hay AC=4cm
Xét ΔABC vuông tại A có
\(\sin\widehat{ABC}=\dfrac{AC}{BC}=\dfrac{4}{5}\)
nên \(\widehat{ABC}\simeq53^0\)
\(\Leftrightarrow\widehat{ACB}=37^0\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔBDC vuông tại B có AB là đường cao ứng với cạnh huyền CD, ta được:
\(BA^2=AC\cdot AD\)
\(\Leftrightarrow AD=\dfrac{3^2}{4}=2.25\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=3.75^2\)
hay BD=3,75cm
c: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABD vuông tại A có AF là đường cao ứng với cạnh huyền BD, ta được:
\(BF\cdot BD=BA^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AE là đường cao ứng với cạnh huyền BC, ta được:
\(BE\cdot BC=BA^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(BF\cdot BD=BE\cdot BC\)
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
Bạn tự vẽ hình.
(a) \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
+) \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\Rightarrow\hat{B}\approx53^o\)
+) \(\hat{C}=90^o-\hat{B}\approx90^o-53^o=37^o\)
(b) +) \(AB.AC=BC.AH\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)
\(\hat{A}=\hat{E}=\hat{F}=90^o\left(gt\right)\Rightarrow AEHF\) là hình chữ nhật.
Do đó, \(EF=AH\left(đpcm\right)\)
b: Xét ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>AC=4(cm)
Xét ΔBCD vuông tại B có BA là đường cao
nên \(BA^2=AC\cdot AD\)
=>\(4\cdot AD=3^2=9\)
=>AD=2,25(cm)
b: ΔBAC vuông tại A có AE là đường cao
nên \(BE\cdot BC=BA^2\left(1\right)\)
Xét ΔBAD vuông tại A có AF là đường cao
nên \(BF\cdot BD=BA^2\left(2\right)\)
Từ (1),(2) suy ra \(BE\cdot BC=BF\cdot BD\)
c: BE*BC=BF*BD
=>\(\dfrac{BE}{BD}=\dfrac{BF}{BC}\)
Xét ΔBEF vuông tại B và ΔBDC vuông tại B có
\(\dfrac{BE}{BD}=\dfrac{BF}{BC}\)
Do đó: ΔBEF đồng dạng với ΔBDC
=>\(\widehat{BFE}=\widehat{BCD}\)