Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)
ANH CS THỂ THAM KHẢO
a , b tự lm nha ( dễ mà )
c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BC
⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI
Và MM là trung điểm của HKHK
⇒DM⇒DM là đường trung bình ΔHIKΔHIK
⇒DM∥IK⇒DM∥IK
⇒BC∥IK⇒BC∥IK
⇒BCKI⇒BCKI là hình thang
ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến
⇒ΔCHI⇒ΔCHI cân đỉnh CC
⇒CI=CH⇒CI=CH (*)
Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)
Từ (*) và (**) suy ra CI=BKCI=BK
Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK
Suy ra BCIKBCIK là hình thang cân.
Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)
⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
b: góc DFC=góc EBC
góc EFC=góc DAC
góc EBC=góc DAC
=>góc DFC=góc EFC
góc BHC=góc FHE=180 độ-góc BAC
=>góc BHC+góc BAC=180 độ
H đối xứng M qua BC
=>BH=BM; CH=CM
mà CB chung
=>ΔBHC=ΔBMC
=>góc BMC=góc BHC
=>góc BMC+góc BAC=180 độ
=>ABMC nội tiếp(1)
góc AHC=góc FHD=180 độ-góc ABC
=>góc AHC+góc ABC=180 độ
H đối xứngN qua AC
=>AN=AH; CN=CH
mà AC chung
nên ΔANC=ΔAHC
=>góc AHC=góc ANC
=>góc ANC+góc ABC=180 độ
=>ABCN nội tiếp(2)
góc AHB=góc DHE=180 độ-góc ACB
=>góc AHB+góc ACB=180 độ
H đối xứng P qua AB
=>AP=AH; BH=BP
=>ΔAHB=ΔAPB
=>góc APB+góc ACB=180 độ
=>APBC nội tiếp(3)
Từ (1), (2), (3) suy ra ĐPCM
Tứ giác FEAH có: \(\widehat{FAH}=\widehat{AEH}=90^o\)
=> Tứ giác FEAH nội tiếp => \(\widehat{HEF}=\widehat{FAH}\)
Tứ giác ABDE có: \(\widehat{ADB}=\widehat{AEB}=90^o\)
=> Tứ giác ABDE nội tiếp => \(\widehat{BAD}=\widehat{BED}\)
Vậy \(\widehat{HEF}=\widehat{BED}\)
Xét \(\Delta\)HIE \(\left(\widehat{HIE}=90^o\right)\)và \(\Delta\)HKE \(\left(\widehat{HKE}=90^o\right)\)có:
EH chung
\(\widehat{HEI}=\widehat{HEK}\)
=> \(\Delta HIE=\Delta HKE\) (cạnh huyền-góc nhọn)
=> \(\hept{\begin{cases}EI=EK\\HI=HK\end{cases}}\)(2 cạnh tương ứng)
=> \(\Delta\)KEI cân tại E, \(\Delta\)HIK cân tại H
\(\Rightarrow\widehat{KIE}=\frac{1}{2}\widehat{IEK}\Rightarrow\widehat{KIE}+\widehat{FAH}=90^o\)
Mà \(\widehat{MHF}=\widehat{FAH}=90^o\)
Do đó: \(\widehat{KIE}=\widehat{MHF}\)=> Tứ giác FIMH nội tiếp => \(\widehat{MHF}=\widehat{HIF}=90^o\)
Tứ giác HMNK có: \(\widehat{HMN}=\widehat{HKN}=90^o\)=> Tứ giác HMNK nội tiếp
Ta có: \(\hept{\begin{cases}\widehat{HFN}=\widehat{HIK}\\\widehat{HNM}=\widehat{HIK}\\\widehat{HIK}=\widehat{HKI}\end{cases}}\)
=> \(\Delta\)HFN đồng dạng \(\Delta\)HIK (g.g)
=> \(\frac{HF}{HI}=\frac{HN}{HK},HI=HK\Rightarrow HF=HN\)
\(\Delta\)HFN cân tại H, HM _|_ FN => HM là đường trung tuyến của tam giác HFN
FM _|_ AD, BD _|_ AD => FM//BD
MF=MN, DB=DC nên \(\frac{AM}{AD}=\frac{MN}{DS}\)
Xét \(\Delta\)AMN và \(\Delta\)ADS có:
\(\widehat{AMN}=\widehat{ADS}\left(MN//BS\right),\frac{AM}{AD}=\frac{MN}{DS}\)
=> \(\Delta\)AMN đồng dạng \(\Delta\)ADS (c.g.c)
=> \(\widehat{MAN}=\widehat{DAS}\)
=> 2 tia AN, AS trùng nhau => A,N,S thẳng hàng
Ta có: HM = HA (vì M là điểm đối xứng của H qua D) $\angle HND = \angle HAM = \angle HAD$ (do ND // AM) $\angle HAN = \angle HDM = \angle HDA$ (do AN // DM)
Từ đó suy ra $\Delta HND \sim \Delta HAD$ và ta có $HN.AD=AN.DM$.