K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2017

a, Dễ dàng tính được BC, Áp dụng tính chất đường phân giác => BD/DC = BA/AC = 3/4

Mà BD + DC = BC => Tính được DC và BC

Do tam giác ABC vuông => Góc C = Sin (3/4)   ( lấy máy tính ra tính )

Xét tam giác DEC vuông tại E có CD xác định , C xác định => DE = Sin(C) . CD

Áp dụng hệ thức lượng giác trong tam giác => AH.BC = AB.AC => AH =?

b, Kẻ DH vuông góc với AB

Dễ dành cm được DHEA là hcn => DH =AE = AC - EC  ( EC xác định bằng cách dung fđịnh lí pitago)

=> S ABD = DH.AB/2

=> S ACD = S ABC - S ABD

k nhé

6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

20 tháng 5 2022

loading...  nhớ đánh giá tốt giúp mk ạ

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=9^2+12^2=225\)

hay BC=15(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)

hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{BC}{21}=\dfrac{15}{21}=\dfrac{5}{7}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{BD}{9}=\dfrac{5}{7}\\\dfrac{CD}{12}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{45}{7}cm\\CD=\dfrac{60}{7}cm\end{matrix}\right.\)

Vậy: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)

22 tháng 6 2021

undefined

a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=15/7

=>BD=45/7cm; CD=60/7cm

Xét ΔCAB có DE//AB

nên DE/AB=CD/CB

=>DE/9=60/7:15=4/7

=>DE=36/7cm

b: \(S_{ACD}=\dfrac{1}{2}\cdot DE\cdot AC=\dfrac{1}{2}\cdot\dfrac{36}{7}\cdot12=\dfrac{216}{7}\left(cm^2\right)\)

\(S_{ACB}=\dfrac{1}{2}\cdot9\cdot12=6\cdot9=54\left(cm^2\right)\)

\(S_{ABD}=54-\dfrac{216}{7}=\dfrac{162}{7}\left(cm^2\right)\)

19 tháng 4 2018

A B C D E

a) Ra có tam giác ABC vuông tại A ( gt )

\(\Rightarrow BC^2=AB^2+AC^2=9^2+12^2=81+144=225\left(cm\right)\)

\(\Rightarrow BC=15\left(cm\right)\)

Vì AD là tia phân giác của \(\widehat{BAC}\)( gt )

\(\Rightarrow\frac{DC}{DB}=\frac{AC}{AB}=\frac{12}{9}=\frac{4}{3}\Rightarrow\frac{DC+DB}{DB}=\frac{4+3}{3}=\frac{7}{3}\)\(\Rightarrow\frac{BC}{DB}=\frac{7}{3}\)

\(\Rightarrow DB=\frac{3}{7}.BC=\frac{3}{7}.15=\frac{45}{7}\left(cm\right)\)

\(\Rightarrow DC=15-\frac{45}{7}=\frac{60}{7}\left(cm\right)\)

Ta có DE // AB ( Vì AB và DE vuông góc với AC )

Áp dụng hệ quả định lý Ta lét ta có:

\(\Rightarrow\frac{DE}{AB}=\frac{CD}{CB}=\frac{60}{\frac{7}{15}}=\frac{4}{7}\)\(\Rightarrow DE=\frac{4}{7}.AB=\frac{4}{7}.9=\frac{36}{7}\left(cm\right)\)

b) Ta có: \(S_{ADC}=\frac{1}{2}.DE.AC=\frac{1}{2}.\frac{36}{7}.12=\frac{216}{7}\left(cm^2\right)\)

Ta có: \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.9.12=54\left(cm^2\right)\)

\(\Rightarrow S_{ABD}=S_{ABC}-S_{ACD}=54-\frac{216}{7}=\frac{126}{7}\left(cm^2\right)\)

20 tháng 3 2022

e tham khảo câu a

undefined

7 tháng 5 2017

a)   BD=45/7        CD=60/7       DE36/7

b)    ADB=162/7     BCD k có vì 3 điểm này thẳng hàng

7 tháng 5 2017

Thanks.