Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta\)ABC có: DA=DB(gt)
EA=EC(gt)
=> DE là đường trung bình của \(\Delta\)ABC
=> DE//BC
Xét tứ giác BDEC có: DE//BC
=> Tứ giác BDEC là hình thang
Mà:^B=^C (gt)
=> Tứ giác BDEC là hình thang cân
b)Vì DE là đường trung bình của tam giác ABC
=>\(DE=\frac{1}{2}BC=\frac{1}{2}\cdot8=4\)
a: Xét ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Do đó: DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BDEC là hình thang cân
a) Dễ dàng c/m được AD = BD = AE = CE
=> tg ADE cân tại A => \(\widehat{D_1}=\frac{180^0-\widehat{A}}{2}\)
C/m tương tự ta có \(\widehat{B_2}=\frac{180^0-\widehat{A}}{2}\)
=> góc D1 = góc B2
mà 2 góc này ở vị trí đồng vị => AE // BC => BDEC là hình thang
Mặt khác tg ABC cân tại A => góc B2 = góc C => BDEC là hình thang cân
b) đề chắc yêu cầu tính DE :v
Dễ thấy DE là đường trung bình của tam giác ABC
=> DE = 1/2 BC
=> DE = 8/2
=> DE = 4 ( cm )
Vậy.....
a)Vì I là trung điểm của BC
\(\Rightarrow\)AI là trung tuyến của \(\Delta ABC\)cân tại A
\(\Rightarrow AI\)là phân giác của \(\Delta ABC\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\)
Vì \(\Delta ABC\)cân tại A \(\Rightarrow AB=AC\)
Xét \(\Delta BAM\)và \(\Delta CAM\),có:
\(\hept{\begin{cases}AB=AC\\\widehat{BAM}=\widehat{CAM}\\AM:chung\end{cases}}\)
\(\Rightarrow\Delta BAM=\Delta CAM\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABM}=\widehat{ACM}\)(2 góc tương ứng)
Xét \(\Delta ABE\)và \(\Delta ACD\),có:
\(\hept{\begin{cases}\widehat{ABM}=\widehat{ACM}\\AB=AC\\\widehat{BAC}:chung\end{cases}}\)
\(\Rightarrow\Delta ABE=\Delta ACD\left(g.c.g\right)\)
\(\Rightarrow AE=AD\)(2 cạnh tương ứng)
\(\Rightarrow\Delta ADE\)cân tại A
\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{BAC}}{2}\)
mà \(\Delta ABC\)cân tại A \(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\)
\(\Rightarrow\widehat{ADE}=\widehat{ABC}\)
Mặt khác : \(\widehat{ADE}\)và \(\widehat{ABC}\)là 2 góc ở vị trí đồng vị
\(\Rightarrow DE//BC\)
\(\Rightarrow BDEC\)là hình thang
Ta có : \(\widehat{ABC}=\widehat{ACB}\)(do \(\Delta ABC\)cân tại A)
\(\Rightarrow BDEC\)là hình thang cân
b)Vì BDEC là hình thang cân \(\Rightarrow BD=CE\)
Ta có :BD=CE \(\Leftrightarrow\Delta BDE\)cân tại B
\(\Leftrightarrow\widehat{DBE}=\widehat{DEB}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(do DE//BC)
\(\Leftrightarrow\widehat{DBE}=\widehat{EBC}\)
\(\Leftrightarrow BE\)là phân giác của \(\widehat{ABC}\)
hay \(BM\)là phân giác của \(\widehat{ABC}\)
Vậy khi M là 1 điểm nằm trên AI sao cho BM là phân giác của \(\widehat{ABC}\)thì BD=DE=CE
Xét tam giác ABC có:
D là trung điểm của AB
E là trung điểm của AC
=>DE là đường trung bình của tam giác ABC
=>DE//BC
=>tứ giác DBEC là hình thang
Vì tam giác ABC cân tại A
=>AB=AC
=>AD=BD=AE=AC ( D là trung điểm AB,E là trung điểm AC )
mà BD=8cm =>AE=8cm
a, Xét tam giác ABC có :
D là trung điểm của AB
E là trung điểm của AC
Nên : DE // BC (*)
Suy ra : DE là đường trung bình của tam giác ABC
Do đó : Tứ giác DBEC là hình thang
Từ (*) ⇒ Góc ADE = Góc ABC ( sole trong )
⇒ Góc AED = Góc ACB ( sole trong )
Lại có : Góc ABC = Góc ACB ( △ ABC cân tại A )
Nên : Góc ADE = Góc AED
Suy ra : △ ADE cân tại A
Do đó : AD = AE ( 2 cạnh bên )
Mà : AD = BD ( D là trung điểm của AB )
AE = CE ( E là trung điểm của AC )
Nên : BD = CE
Vậy hình thang DBEC là hình thang cân.