K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
6 tháng 2 2023
x tỉ lệ thuận với y theo hệ số a
=>x=ay
y tỉ lệ thuận với z theo hệ số b
=>y=bz
z tỉ lệ thuận với t theo hệ số c
=>z=ct
=>y=b*ct=t*bc
=>x=a*t*bc=t*abc
=>x tỉ lệ thuận với t theo hệ số tỉ lệ k=a*b*c
2 tháng 12 2019
x tỉ lệ thuận với z theo HSTL là ab
Giải thích các bước giải:
Vì x tỉ lệ thuận với y theo HSTL là a
=>x=ayVì y tỉ lệ thuận với z theo HSTL là b=>y=bz=> x=a(bz)=(ab)z
Vậy x tỉ lệ thuận với z với HSTL là ab
1.
Bài 1:
Từ D vẽ đường thẳng song song với AC cắt BC tại F.
Ta có: \(\Delta ABC\) cân tại \(A\left(gt\right)\)
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân) (1).
Vì \(DF\) // \(AC\) (do cách vẽ)
=> \(\widehat{ACB}=\widehat{DFB}\) (vì 2 góc đồng vị) (2).
\(DF\) // \(AC\)
=> \(DF\) // \(EC\)
=> \(\widehat{FDI}=\widehat{CEI}\) (vì 2 góc so le trong)
Từ (1) và (2) => \(\widehat{ABC}=\widehat{DFB}.\)
=> \(\Delta DFB\) cân tại \(D.\)
=> \(BD=DF\) (tính chất tam giác cân).
Mà \(BD=CE\left(gt\right)\)
=> \(DF=CE.\)
Xét 2 \(\Delta\) \(FDI\) và \(CEI\) có:
\(FD=CE\left(cmt\right)\)
\(\widehat{FDI}=\widehat{CEI}\left(cmt\right)\)
\(DI=EI\) (vì I là trung điểm của \(DE\))
=> \(\Delta FDI=\Delta CEI\left(c-g-c\right)\)
=> \(\widehat{FID}=\widehat{CIE}\) (2 góc tương ứng).
Ta có: \(\widehat{DIC}+\widehat{CIE}=180^0\) (vì 2 góc kề bù)
Mà \(\widehat{FID}=\widehat{CIE}\left(cmt\right)\)
=> \(\widehat{DIC}+\widehat{FID}=180^0\)
Mà \(\widehat{DIC}+\widehat{FID}=\widehat{FIC}\)
=> \(\widehat{FIC}=180^0.\)
Hay \(\widehat{BIC}=180^0.\)
=> 3 điểm \(B,I,C\) thẳng hàng (đpcm).
Chúc bạn học tốt!