Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta viết lại phương trình: \(3x^2+5x+(m-2)=0\)
Để pt có hai nghiệm (không nhất thiết phân biệt) thì:
\(\Delta=25-12(m-2)\geq 0\)
\(\Leftrightarrow m\leq \frac{49}{12}\)
Khi đó, áp dụng định lý Viete của pt bậc 2: \(\left\{\begin{matrix} x_1+x_2=-\frac{5}{3}\\ x_1x_2=\frac{m-2}{3}\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \frac{1}{3}x_2+x_2=\frac{-5}{3}\\ \frac{1}{3}x_2^2=\frac{m-2}{3}\end{matrix}\right.\) (thay \(x_1=\frac{1}{3}x_2\) )
\(\Leftrightarrow \left\{\begin{matrix} x_2=\frac{-5}{4}\\ \frac{1}{3}x_2^2=\frac{m-2}{3}\end{matrix}\right.\) \(\Rightarrow \frac{m-2}{3}=\frac{1}{3}\left(\frac{-5}{4}\right)^2=\frac{25}{48}\)
\(\Leftrightarrow m=\frac{57}{16}\) (thỏa mãn)
Vậy \(m=\frac{57}{16}\)
a) Xét phương trình thứ nhất, có \(\Delta_1=b^2-4ac\)
Xét phương trình thứ hai, có \(\Delta_2=b^2-4ca=b^2-4ac\)
Từ đó ta có \(\Delta_1=\Delta_2\), do đó, khi phương trình (1) có nghiệm \(\left(\Delta_1\ge0\right)\)thì \(\Delta_2\ge0\)dẫn đến phương trình (2) cũng có nghiệm và ngược lại.
Vậy 2 phương trình đã cho cùng có nghiệm hoặc cùng vô nghiệm.
b) Vì \(x_1,x_2\)là 2 nghiệm của phương trình (1) nên theo định lý Vi-ét, ta có \(x_1x_2=\frac{c}{a}\)
Tương tự, ta có \(x_1'x_2'=\frac{a}{c}\)
Từ đó \(x_1x_2+x_1'x_2'=\frac{c}{a}+\frac{a}{c}\)
Nếu \(\hept{\begin{cases}a>0\\c>0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c< 0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}>0\\\frac{a}{c}>0\end{cases}}\), khi đó có thể áp dụng bất đẳ thức Cô-si cho 2 số dương \(\frac{c}{a}\)và \(\frac{a}{c}\):
\(\frac{c}{a}+\frac{a}{c}\ge2\sqrt{\frac{c}{a}.\frac{a}{c}}=2\), dẫn đến \(x_1x_2+x_1'x_2'\ge2\)
Nhưng nếu \(\hept{\begin{cases}a>0\\c< 0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c>0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}< 0\\\frac{a}{c}< 0\end{cases}}\),như vậy \(\frac{c}{a}+\frac{a}{c}< 0< 2\)dẫn đến \(x_1x_2+x_1'x_2'< 2\)
Như vậy không phải trong mọi trường hợp thì \(x_1x_2+x_1'x_2'>2\)
\(\Delta'=\left(m-1\right)^2-m+3=m^2-3m+4=\left(m-\frac{3}{2}\right)^2+\frac{7}{4}>0;\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-3\end{matrix}\right.\)
\(A=2\left(x_1^2+x_2^2\right)-5x_1x_2=2\left(x_1+x_2\right)^2-9x_1x_2\)
\(=8\left(m-1\right)^2-9\left(m-3\right)\)
\(=8m^2-25m+35=8\left(m-\frac{25}{16}\right)^2+\frac{495}{32}\ge\frac{495}{32}\)
Dấu "=" xảy ra khi \(m=\frac{16}{25}\)
\(A=27\Leftrightarrow8m^2-25m+35=27\)
\(\Leftrightarrow8m^2-25m+8=0\Rightarrow m=\frac{25\pm3\sqrt{41}}{16}\)
Để pt có nghiệm này bằng nghiệm kia \(\Leftrightarrow\) pt có nghiệm kép
\(\Leftrightarrow\Delta'=m^2-3m+4=0\Rightarrow\) ko tồn tại m thỏa mãn
\(\Delta'=m^2-2m+1=\left(m-1\right)^2\ge0;\forall m\)
\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
\(A=2\left(x_1+x_2\right)^2-9x_1x_2\)
\(=8m^2-9\left(2m-1\right)=8m^2-18m+9\)
\(=8\left(m-\frac{9}{8}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
\(A_{min}=-\frac{9}{8}\) khi \(m=\frac{9}{8}\)
\(A=27\Leftrightarrow8m^2-18m+9=27\)
\(\Leftrightarrow8m^2-18m-18=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-\frac{3}{4}\end{matrix}\right.\)
Để pt có nghiệm này bằng nghiệm kia \(\Leftrightarrow\Delta'=0\)
\(\Rightarrow\left(m-1\right)^2=0\Rightarrow m=1\)
3x2 - 5x + m = 0 là PT bậc 2
Áp dụng hệ thức Vi-et, ta có : \(\hept{\begin{cases}x_1x_2=\frac{m}{3}\\x_1+x_2=\frac{5}{3}\end{cases}}\)
\(x_1^2-x_2^2=\left(x_1-x_2\right)\left(x_1+x_2\right)=\pm\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\frac{5}{9}\)
+) Xét \(x_1-x_2\ge0\) thì : \(\frac{5}{9}=\frac{5}{3}.\sqrt{\left(\frac{5}{3}\right)^2-4.\frac{m}{3}}\Rightarrow\frac{1}{3}=\sqrt{\frac{25}{9}-\frac{4m}{3}}\Rightarrow m=2\)
+) Xét \(x_1-x_2< 0\)thì : \(\frac{5}{9}=-\frac{5}{3}.\sqrt{\left(\frac{5}{3}\right)^2-4.\frac{m}{3}}\)rồi giải đc m
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
\(\Delta=25-12m\ge0\Rightarrow m\le\frac{25}{12}\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{5}{3}\\x_1x_2=\frac{m}{3}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{5}{3}\\x_1^2-x_2^2=\frac{5}{9}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{5}{3}\\\left(x_1-x_2\right)\left(x_1+x_2\right)=\frac{5}{9}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{5}{3}\\x_1-x_2=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=1\\x_2=\frac{2}{3}\end{matrix}\right.\)
\(x_1x_2=\frac{m}{3}\Rightarrow\frac{m}{3}=\frac{2}{3}\Rightarrow m=2\)
2/ \(\left|a+c\right|< b\Rightarrow\left\{{}\begin{matrix}b>0\\b^2>\left(a+c\right)^2\ge4ac\end{matrix}\right.\)
\(\Rightarrow b^2>4ac\Rightarrow b^2-4ac>0\)
\(\Rightarrow\Delta>0\Rightarrow\) phương trình luôn luôn có nghiệm