K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để phương trình có hai nghiệm trái dấu thì (m-1)(m+4)(m+3)<0

=>m<-4 hoặc -3<m<1

b:Để phương trình có ít nhất 1 nghiệm thì 

(m-1)(m+4)(m+3)<0 hoặc \(\left\{{}\begin{matrix}m< >-3\\\left(m-1\right)^2-4\left(m+3\right)\left(m-1\right)\left(m+4\right)< 0\\\dfrac{-m+1}{m+3}< 0;\dfrac{\left(m-1\right)\left(m+4\right)}{\left(m+3\right)}>0\end{matrix}\right.\)

=>(m<-4 hoặc -3<m<1) hoặc \(\left\{{}\begin{matrix}m< >-3\\\left(m-1\right)\left(m-1-4m^2-28m-48\right)< 0\\\left\{{}\begin{matrix}\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\\\left[{}\begin{matrix}m>1\\-4< m< -3\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

=>(m<-4 hoặc -3<m<1) hoặc (m>1 hoặc m<-3)

 

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)

a: \(\Leftrightarrow\left(2m+1\right)^2-4\left(m^2-3\right)=0\)

\(\Leftrightarrow4m^2+4m+1-4m^2+12=0\)

=>4m=-13

hay m=-13/4

c: \(\Leftrightarrow\left(2m-2\right)^2-4m^2>=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2>=0\)

=>-8m>=-4

hay m<=1/2