\(\frac{x}{x+2}\)+ \(\frac{x+3}{x-2}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a) Ta có: \(P=\frac{x}{x+2}+\frac{x+3}{x-2}+\frac{6-9x}{4-x^2}\)

\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x+3\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{6-9x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2-2x+x^2+5x+6-6+9x}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{2x^2+12x}{\left(x-2\right)\left(x+2\right)}\)

b) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Để P=3 thì \(\frac{2x^2+12x}{\left(x-2\right)\left(x+2\right)}=3\)

\(\Leftrightarrow2x^2+12x=3\left(x-2\right)\left(x+2\right)\)

\(\Leftrightarrow2x^2+12x=3\left(x^2-4\right)\)

\(\Leftrightarrow2x^2+12x=3x^2-12\)

\(\Leftrightarrow2x^2+12x-3x^2+12=0\)

\(\Leftrightarrow-x^2+12x+12=0\)

\(\Leftrightarrow x^2-12x-12=0\)

\(\Leftrightarrow x^2-12x+36-24=0\)

\(\Leftrightarrow\left(x-6\right)^2=24\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=\sqrt{24}\\x-6=-\sqrt{24}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6+2\sqrt{6}\left(nhận\right)\\x=6-2\sqrt{6}\left(nhận\right)\end{matrix}\right.\)

Vậy: khi P=3 thì \(x\in\left\{6+2\sqrt{6};6-2\sqrt{6}\right\}\)

Bài 2:

a) Ta có: \(B=\frac{2a^2}{a^2-1}+\frac{a}{a+1}-\frac{a}{a-1}\)

\(=\frac{2a^2}{\left(a+1\right)\left(a-1\right)}+\frac{a\left(a-1\right)}{\left(a+1\right)\left(a-1\right)}-\frac{a\left(a+1\right)}{\left(a+1\right)\left(a-1\right)}\)

\(=\frac{2a^2+a^2-a-a^2-a}{\left(a+1\right)\cdot\left(a-1\right)}=\frac{2a^2-2a}{\left(a+1\right)\left(a-1\right)}\)

\(=\frac{2a\left(a-1\right)}{\left(a+1\right)\left(a-1\right)}=\frac{2a}{a+1}\)

b) ĐKXĐ: \(a\notin\left\{1;-1\right\}\)

Để B là số nguyên thì \(2a⋮a+1\)

\(\Leftrightarrow2a+2-2⋮a+1\)

\(\Leftrightarrow-2⋮a+1\)

\(\Leftrightarrow a+1\inƯ\left(-2\right)\)

\(\Leftrightarrow a+1\in\left\{1;-1;2;-2\right\}\)

hay \(a\in\left\{0;-2;1;-3\right\}\)

\(a\notin\left\{1;-1\right\}\)

nên \(a\in\left\{0;-2;-3\right\}\)

Vậy: khi B có giá trị nguyên thì \(a\in\left\{0;-2;-3\right\}\)

Bài 3:

Ta có: \(Q=\frac{4}{x+2}+\frac{2}{x-2}+\frac{6-5x}{x^2-4}\)

\(=\frac{4\left(x-2\right)+2\left(x+2\right)+6-5x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{4x-8+2x+4+6-5x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x+2}{\left(x+2\right)\left(x-2\right)}=\frac{1}{x-2}\)

Bài 4:

a) Ta có: \(P=\left(\frac{4\sqrt{x}}{\sqrt{x}+2}-\frac{8x}{x-4}\right)\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}+3\right)\)

\(=\left(\frac{4\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}+\frac{3\left(\sqrt{x}-2\right)}{\sqrt{x}-2}\right)\)

\(=\frac{4x-8\sqrt{x}-8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{\sqrt{x}+2+3\sqrt{x}-6}{\sqrt{x}-2}\)

\(=\frac{-4\sqrt{x}\left(\sqrt{x}+2\right)\cdot4\cdot\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\cdot\left(\sqrt{x}-2\right)^2}\)

\(=\frac{-16x+16\sqrt{x}}{\left(\sqrt{x}-2\right)^2}\)

b) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)

Để P=-4 thì \(\frac{-16x+16\sqrt{x}}{\left(\sqrt{x}-2\right)^2}=-4\)

\(\Leftrightarrow-16x+16\sqrt{x}=-4\left(\sqrt{x}-2\right)^2\)

\(\Leftrightarrow-16x+16\sqrt{x}=-4\left(x-4\sqrt{x}+4\right)\)

\(\Leftrightarrow-16x+16\sqrt{x}=-4x+16\sqrt{x}-16\)

\(\Leftrightarrow-16x+16\sqrt{x}+4x-16\sqrt{x}+16=0\)

\(\Leftrightarrow-12x+16=0\)

\(\Leftrightarrow-12x=-16\)

hay \(x=\frac{4}{3}\)(nhận)

Vậy: Khi P=-4 thì \(x=\frac{4}{3}\)

23 tháng 7 2020

Bạn giải thích kĩ hơn về phần bài 2 câu b được ko ạk

2 tháng 3 2020

Câu 3 :

\(ĐKXĐ:x>0\)

 \(P=\left(\frac{2}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+2}\right):\frac{2\sqrt{x}}{x+2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}\cdot\frac{x+2\sqrt{x}}{2\sqrt{x}}\)

\(\Leftrightarrow P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}\)

b) Để P = 3

\(\Leftrightarrow\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}=3\)

\(\Leftrightarrow2\sqrt{x}+4+x=6\sqrt{x}\)

\(\Leftrightarrow x-4\sqrt{x}+4=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)

\(\Leftrightarrow\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=2\)

\(\Leftrightarrow x=4\)(tm)

Vậy để \(P=3\Leftrightarrow x=4\)

2 tháng 3 2020

Câu 1 : Hình như sai đề !! Mik sửa :

\(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

\(A=\left(\frac{x}{x\sqrt{x}-4\sqrt{x}}-\frac{6}{3\sqrt{x}-6}+\frac{1}{\sqrt{x}+2}\right):\left(\sqrt{x}-2+\frac{10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{2}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\right):\left(\frac{x-4+10-x}{\sqrt{x}+2}\right)\)

\(\Leftrightarrow A=\frac{\sqrt{x}-2\sqrt{x}-4+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{6}{\sqrt{x}+2}\)

\(\Leftrightarrow A=\frac{-6\left(\sqrt{x}+2\right)}{6\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(\Leftrightarrow A=-\frac{1}{\sqrt{x}-2}\)

b) Để A < 2

\(\Leftrightarrow-\frac{1}{\sqrt{x}-2}< 2\)

\(\Leftrightarrow-1< 2\sqrt{x}-4\)

\(\Leftrightarrow2\sqrt{x}>3\)

\(\Leftrightarrow\sqrt{x}>1,5\)

\(\Leftrightarrow x>2,25\)

Vậy để \(A< 2\Leftrightarrow x>2,25\)

7 tháng 7 2017

Bài 1 

ĐK \(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

 A =\(\left(\frac{x^2-x+7}{\left(x+2\right)\left(x-2\right)}+\frac{1}{x+2}\right):\left(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{2x}{\left(x+2\right)\left(x-2\right)}\right)\)

\(=\frac{x^2-x+7+x-2}{\left(x+2\right)\left(x-2\right)}:\frac{x^2+4x+4-x^2+4x-4-2x}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2+5}{\left(x+2\right)\left(x-2\right)}.\frac{\left(x+2\right)\left(x-2\right)}{6x}=\frac{x^2+5}{6x}\)

b , \(A=1\Rightarrow\frac{x^2+5}{6x}=1\Rightarrow x^2-6x+5=0\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}\left(tm\right)}\)

Vậy x=1 hoặc  x=5

Bài 2.

a. \(B=\frac{\left(2+x\right)^2-\left(2-x\right)^2+4x^2}{\left(2+x\right)\left(2-x\right)}:\frac{x+3}{2-x}\)

\(=\frac{4x^2+8x}{\left(2+x\right)\left(2-x\right)}.\frac{2-x}{x+3}=\frac{2x}{x+3}\)

b.  \(B=\frac{2x}{x+3}=2-\frac{6}{x+3}\)

B nguyên \(\Leftrightarrow x+3\inƯ\left(-6\right)\Rightarrow x+3\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)

Vậy \(x\in\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)thì B nguyên

11 tháng 2 2020

\(1,ĐKXĐ:x\ge0;x\ne4\)

\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{\sqrt{x}-2+\sqrt{x}+2-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{2\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(1+\frac{2}{\sqrt{x}}\right)\left(\frac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)

\(A=\left(\frac{\sqrt{x}+2}{\sqrt{x}}\right)\left(\frac{2}{\sqrt{x}+2}\right)\)

\(A=\frac{2}{\sqrt{x}}\)

\(2,A>\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{\sqrt{x}}>\frac{1}{2}\)

\(\Leftrightarrow\frac{2}{\sqrt{x}}-\frac{1}{2}>0\)

\(\Leftrightarrow\frac{4}{2\sqrt{x}}-\frac{\sqrt{x}}{2\sqrt{x}}>0\)

\(\Leftrightarrow\frac{4-\sqrt{x}}{2\sqrt{x}}>0\)

Do \(\sqrt{x}>0\Rightarrow2\sqrt{x}>0\)

\(\Rightarrow4-\sqrt{x}>0\)

\(\Leftrightarrow-\sqrt{x}>-4\)

\(\Leftrightarrow\sqrt{x}< 4\)

\(\Leftrightarrow x< 16\)

Kết hợp với ĐKXĐ thì \(0\le x< 16\)và \(x\ne4\)

\(3,A=-2\sqrt{x}+5\)

\(\Leftrightarrow\frac{2}{\sqrt{x}}=-2\sqrt{x}+5\)

\(\Leftrightarrow\sqrt{x}\left(-2\sqrt{x}+5\right)=2\)

\(\Leftrightarrow-2x+5\sqrt{x}-2=0\)

\(\Leftrightarrow-2x+2.5\sqrt{x}+2.5\sqrt{x}-2=0\)

\(\Leftrightarrow\left(-2x+2.5\sqrt{x}\right)+\left(2.5\sqrt{x}-2\right)=0\)

Đến đây thì mình chịu

Bạn tự giải nốt nhé

HỌC TỐT

18 tháng 8 2017

a)\(\left(\frac{1}{\sqrt{x}+2}+\frac{1}{\sqrt{x}-2}\right):\frac{1}{x-4}\left(ĐKXĐ:x\ne4;x\ge0\right)\)

\(=\left(\frac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right).\left(x-4\right)\)

\(=2\sqrt{x}\)

b)Tại A=6 ta có:\(2\sqrt{x}=6\)

                      \(\Leftrightarrow\sqrt{x}=3\)

                       \(\Rightarrow x=9\)

c)Tại A<4 ta đc:\(2\sqrt{x}< 4\)

                    \(\Leftrightarrow\sqrt{x}< 2\)

                     \(\Rightarrow x< 4\)