K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Đáp án bài 2 đây mn tham khảo ạ!
+ Nhận thấy A chứa số nguyên dương nhỏ nhất ( gọi số đó là p )
Ta sẽ chứng minh mọi phần tử của A đều là bội của p
Thật vậy gọi \(a\in A\) bất kì
=> \(a=kp+r\) ( \(0\le r< p;k,r\in Z\) )
Vì \(p\in A\Rightarrow\left\{{}\begin{matrix}-p\in A\\2p\in A\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}-2p\in A\\3p\in A\end{matrix}\right.\)
cứ như vậy ta có \(kp\in A\forall k\in Z\)
\(\Rightarrow-kp\in A\Rightarrow a-kp\in A\) \(\Rightarrow r\in A\)
\(\Rightarrow r=0\) ( do p là số nguyên dương nhỏ nhất thuộc A )
\(\Rightarrow a⋮p\)
+ Vì \(5\in A\Rightarrow5⋮p\Rightarrow\left[{}\begin{matrix}p=1\\p=5\end{matrix}\right.\)
Nếu p = 1 thì \(A=Z\) ( loại )
\(\Rightarrow p=5\) => đpcm
Bài 4: Nguyên lý bao hàm loại trừ với 3 tập $A,B,C$:
$|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|B\cap C|-|C\cap A|+|A\cap B\cap C|$ vẽ sơ đồ Venn mình nghĩ là cách dễ hình dung nhất.