Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có:
\(\frac{x}{3}=\frac{y}{7}\) và \(x.y=84.\)
Đặt \(\frac{x}{3}=\frac{y}{7}=k\Rightarrow\left\{{}\begin{matrix}x=3k\\y=7k\end{matrix}\right.\)
Lại có: \(x.y=84\)
\(\Rightarrow3k.7k=84\)
\(\Rightarrow21.k^2=84\)
\(\Rightarrow k^2=84:21\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2.\)
+ TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=7.2=14\end{matrix}\right.\)
+ TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-2\right)=-6\\y=7.\left(-2\right)=-14\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;14\right),\left(-6;-14\right).\)
Bài 2:
a) Ta có:
Tham khảo nha:
Biến đổi biểu thức tương đương : (x^2 - 1) /2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : {1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; =>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Chúc bạn học có hiệu quả!
a)
ĐKXĐ: \(2x\geq 0\Leftrightarrow x\geq 0\)
Vậy TXĐ của $x$ là \(D= [0;+\infty)\)
b)
ĐK: \((2x-1)(x+3)\neq 0\Leftrightarrow \left\{\begin{matrix} 2x-1\neq 0\\ x+3\neq 0\end{matrix}\right.\Leftrightarrow \Leftrightarrow \left\{\begin{matrix} x\neq \frac{1}{2}\\ x\neq -3\end{matrix}\right.\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{1}{2}; -3\right\}\)
c)
ĐK: \(8x^3+1\neq 0\Leftrightarrow x^3\neq \frac{-1}{8}\Leftrightarrow x\neq \frac{-1}{2}\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{-1}{2}\right\}\)
d)
ĐK:
\(|x-2015|+1\neq 0\Leftrightarrow |x-2015|\neq -1\Leftrightarrow x\in\mathbb{R}\)
Vậy TXĐ \(D=\mathbb{R}\)
e)
ĐK: \(\left\{\begin{matrix} |x-1,2|\neq 0\\ 2x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1,2\\ x\neq 2,5\end{matrix}\right.\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{1,2; 2,5\right\}\)
f)
ĐK: \(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{\pm 2\right\}\)
a.
\(\frac{2x}{7}=\frac{3y}{2}\Rightarrow4x=21y\)
\(x-y=17\Rightarrow x=17+y\)
\(\Rightarrow4\left(17+y\right)=21y\Rightarrow68+4y=21y\Rightarrow17y=68\Rightarrow y=4\)
\(\Rightarrow x=17+y=17+4=21\)
Bài 1:
\(\frac{1}{8}.16^n=2^n\)
\(\Rightarrow\frac{16^n}{8}=2^n\)
\(\Rightarrow\frac{\left(2^4\right)^n}{2^3}=2^n\)
\(\Rightarrow\frac{2^{4n}}{2^3}=2^n\)
\(\Rightarrow2^{4n-3}=2^n\)
\(\Rightarrow4n-3=n\)
\(\Rightarrow4n-n=3\)
\(\Rightarrow3n=3\)
\(\Rightarrow n=3:3\)
\(\Rightarrow n=1\left(TM\right).\)
Vậy \(n=1.\)
Bài 3:
a) \(\left|2x+3\right|=x+2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=x+2\\2x+3=-x-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-x=2-3\\2x+x=-2-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1x=-1\\3x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\left(-1\right):1\\x=\left(-5\right):3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\frac{5}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{-1;-\frac{5}{3}\right\}.\)
Chúc bạn học tốt!
Bài 3:
b) \(A=\left|x-2006\right|+\left|2007-x\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|\)
\(\Rightarrow A\ge\left|1\right|\)
\(\Rightarrow A\ge1.\)
Dấu '' = '' xảy ra khi:
\(\left(x-2006\right).\left(2007-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2006\ge0\\2007-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2006\le0\\2007-x\le0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge2006\\x\le2007\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2006\\x\ge2007\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2006\le x\le2007\\x\in\varnothing\end{matrix}\right.\)
Vậy \(MIN_A=1\) khi \(2006\le x\le2007.\)
Chúc bạn học tốt!
a. Áp dụng t/c dãy tỉ sô bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{3y}{12}=\dfrac{x-3y}{3-12}=\dfrac{36}{-9}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-4\Rightarrow x=-12\\\dfrac{y}{4}=-4\Rightarrow y=-16\end{matrix}\right.\)
Vậy.............
b. Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x+3y}{4+9}=\dfrac{39}{13}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=3\Rightarrow x=6\\\dfrac{y}{3}=3\Rightarrow y=9\end{matrix}\right.\)
Vậy.........
c. Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{4x}{12}=\dfrac{3y}{15}=\dfrac{4x-3y}{12-15}=\dfrac{12}{-3}=-4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=-4\Rightarrow x=-12\\\dfrac{y}{5}=-4\Rightarrow y=-20\end{matrix}\right.\)
Vậy............
a, \(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{3}=\dfrac{3y}{12}\)
Áp dụng t/c dãy tỉ số = nhau ,ta có :
\(\dfrac{x}{3}=\dfrac{3y}{12}=\dfrac{x-3y}{3-12}=\dfrac{36}{-9}=-4\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=-4\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-16\end{matrix}\right.\)
Vậy ...
b,c tương tự
a: =>x+1/2=5
=>x=9/2
b: =>(x-1)^2=900
=>x-1=30 hoặc x-1=-30
=>x=-29 hoặc x=31
\(\frac{x-1}{-15}=\frac{-60}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=900\\ \Leftrightarrow\left(x-1\right)^2=\left(\pm30\right)^2\\ \Rightarrow x-1\in\left\{30;-30\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=30\\x-1=-30\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=31\\x=-29\end{matrix}\right.\)
Vậy...
Câu 1 kk bt lm ak