Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt a - 1 = x > 0; b - 1 = y > 0
\(A=\frac{\left(x+1\right)^2}{x}+\frac{\left(y+1\right)^2}{y}\\ A=\frac{x^2+2x+1}{x}+\frac{y^2+2y+1}{y}\\ A=\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+4\)
Với x > 0; y > 0, theo BĐT AM-GM ta có:
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}\Rightarrow x+\frac{1}{x}\ge2\)
\(y+\frac{1}{y}\ge2\sqrt{y.\frac{1}{y}}\Rightarrow y+\frac{1}{y}\ge2\)
\(\Rightarrow A\ge8\)
Dấu "=" xảy ra khi và chỉ khi x = y = 1 => a = b = 2
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}=\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}=1\)
b, Đặt \(B=\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(\sqrt{x}=a,\sqrt{y}=b\)
Ta có: \(B=\dfrac{a^3-b^3}{a-b}=\dfrac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}=a^2+ab+b^2\)
\(\Rightarrow B=x+\sqrt{xy}+y\)
Vậy...
c, \(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}}=\dfrac{a}{\left(b-2\right)^2}.\dfrac{\left(b-2\right)^2}{a}=1\)
d, \(2x+\dfrac{\sqrt{1-6x+9x^2}}{3x-1}=2x+\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}=2x+1\)
a:b(a−4)2.√(a−4)4b2(b>0;a≠4)b(a−4)2.(a−4)4b2(b>0;a≠4)
= \(\dfrac{b}{\left(a-4\right)}.\dfrac{\sqrt{\left[\left(a-4\right)^2\right]^2}}{\sqrt{b^2}}\)
=\(\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}\)
= 1 ( nhân tử với tử mẫu với mẫu rồi rút gọn)
b:x√x−y√y√x−√y(x≥0;y≥0;x≠0)xx−yyx−y(x≥0;y≥0;x≠0)
=\(\dfrac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}\)
=\(\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}\)
=\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right).\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}\)(áp dụng hằng đẳng thức )
= (x+\(\sqrt{xy}\)+y)
c:a(b−2)2.√(b−2)4a2(a>0;b≠2)a(b−2)2.(b−2)4a2(a>0;b≠2)
Tương tự câu a
d:x(y−3)2.√(y−3)2x2(x>0;y≠3)x(y−3)2.(y−3)2x2(x>0;y≠3)
tương tự câu a
e:2x +√1−6x+9x23x−1
= \(2x+\dfrac{\sqrt{\left(3x\right)^2-6x+1}}{3x-1}\)
= 2x+\(\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}\)(hằng đẳng thức)
=2x+\(\dfrac{3x-1}{3x-1}\)
=2x+1
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1 chuyên phan bội châu
câu c hà nội
câu g khoa học tự nhiên
câu b am-gm dựa vào hằng đẳng thử rồi đặt ẩn phụ
câu f đặt \(a=\frac{2m}{n+p};b=\frac{2n}{p+m};c=\frac{2p}{m+n}\)
Gà như mình mấy câu còn lại ko bt nha ! để bạn tth_pro full cho nhé !
Câu c quen thuộc, chém trước:
Ta có BĐT phụ: \(\frac{x^3}{x^3+\left(y+z\right)^3}\ge\frac{x^4}{\left(x^2+y^2+z^2\right)^2}\) \((\ast)\)
Hay là: \(\frac{1}{x^3+\left(y+z\right)^3}\ge\frac{x}{\left(x^2+y^2+z^2\right)^2}\)
Có: \(8(y^2+z^2) \Big[(x^2 +y^2 +z^2)^2 -x\left\{x^3 +(y+z)^3 \right\}\Big]\)
\(= \left( 4\,x{y}^{2}+4\,x{z}^{2}-{y}^{3}-3\,{y}^{2}z-3\,y{z}^{2}-{z}^{3 } \right) ^{2}+ \left( 7\,{y}^{4}+8\,{y}^{3}z+18\,{y}^{2}{z}^{2}+8\,{z }^{3}y+7\,{z}^{4} \right) \left( y-z \right) ^{2} \)
Từ đó BĐT \((\ast)\) là đúng. Do đó: \(\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\frac{x^2}{x^2+y^2+z^2}\)
\(\therefore VT=\sum\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}\ge\sum\frac{x^2}{x^2+y^2+z^2}=1\)
Done.
![](https://rs.olm.vn/images/avt/0.png?1311)
gợi ý nè
1) \(ab+c=ab+c\left(a+b+c\right)\)....
2) nhiều cách lắm nhưng tớ chỉ đưa ra 2 cách ...có vẻ hay
đặt \(\sqrt{x}=a,\sqrt{y}=b\)
=>a3+b3=a4+b4=a5+b5
c1: ta có: \(\left(a^3+b^3\right)\left(a^5+b^5\right)=\left(a^4+b^4\right)^2\)......
c2: a5+b5=(a+b)(a4+b4)-ab(a3+b3)
=> 1=(a+b)-ab .......
3) try use UCT
4) tính sau =))
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a)Ta có:\(\sqrt{7-2\sqrt{10}}-\sqrt{6-2\sqrt{5}}=\sqrt{5-2.\sqrt{5}.\sqrt{2}+2}-\sqrt{5-2\sqrt{5}.1+1}=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{2}-\sqrt{5}+1=-\sqrt{2}+1\)
b)Ta có:\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=\sqrt{4+\sqrt{15}}.\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}.\left(\sqrt{10}-\sqrt{6}\right)=\sqrt{4+\sqrt{15}}.1.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
2) Do \(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}=2\\\)\(\Rightarrow\dfrac{1}{a+1}=2-\left(\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)
=\(\dfrac{b}{b+1}+\dfrac{c}{c+1}\)
Áp dụng BĐT AM-GM ta có
\(\dfrac{1}{a+1}=\dfrac{b}{b+1}+\dfrac{c}{c+1}\) \(\ge\)\(2\sqrt{\dfrac{bc}{\left(b+1\right)\left(c+1\right)}}\)
Tương tự ta được
\(\dfrac{1}{b+1}\ge2\sqrt{\dfrac{ca}{\left(c+1\right)\left(a+1\right)}}\)
\(\dfrac{1}{c+1}\ge2\sqrt{\dfrac{ab}{\left(a+1\right)\left(b+1\right)}}\)
Nhân vế theo vế của 3 BĐT cùng chiều ta được
\(\dfrac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)\(\ge\dfrac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\)
\(\Rightarrow abc\le\dfrac{1}{8}\)
Đẳng thức xảy ra\(\Leftrightarrow a=b=c=\dfrac{1}{2}\)
1) Sửa đề: Cho \(\left(x+\sqrt{x^2+2}\right)\left(y+\sqrt{y^2+2}\right)=2\)
Tính \(S=x\sqrt{y^2+2}+y\sqrt{x^2+2}\)
Nhận xét:
\(S^2=x^2\left(y^2+2\right)+y^2\left(x^2+2\right)+2xy\sqrt{\left(x^2+2\right)\left(y^2+2\right)}\)
\(=x^2y^2+\left(x^2y^2+2x^2+2y^2+4\right)+2xy\sqrt{\left(x^2+2\right)\left(y^2+2\right)}-4\)
\(=x^2y^2+\left(x^2+2\right)\left(y^2+2\right)+2xy\sqrt{\left(x^2+2\right)\left(y^2+2\right)}-4\)
\(=\left(xy+\sqrt{\left(x^2+2\right)\left(y^2+2\right)}\right)^2-4\)
\(\Rightarrow\)\(xy+\sqrt{\left(x^2+2\right)\left(y^2+2\right)}=\pm\sqrt{S^2+4}\)
\(\left(x+\sqrt{x^2+2}\right)\left(y+\sqrt{y^2+2}\right)=2\)
\(\Leftrightarrow xy+\sqrt{\left(x^2+2\right)\left(y^2+2\right)}+\sqrt{y^2+2}+y\sqrt{x^2+2}=2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{S^2+4}+S=2\\-\sqrt{S^2+4}+S=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{S^2+4}=2-S\left(S\le2\right)\\\sqrt{S^2+4}=S-2\left(S\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}S^2+4=S^2+4S+4\\S^2+4=S^2+4S+4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}S=0\left(nhận\right)\\S=0\left(loại\right)\end{matrix}\right.\)
2)\(\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Leftrightarrow\left(ab+bc+ca\right)=-0,5\Rightarrow\left(ab+bc+ca\right)^2=0,25\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=0,25\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=0,25\)
\(\left(a^2+b^2+c^2\right)^2=1\)
\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Leftrightarrow a^4+b^4+c^4=0,5\)