Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tam giác vuông AHE và tam giác vuông BHA có góc AEH = HAB( cùng phụ HAE) nên đồng dạng suy ra
AH/BH = AE/AB mà AE = AF; AB = BC, suy ra AH/BH = AF/BC (1)
Mặt khác góc AEH = HBC( so le trong ), nên góc HAF = HBC (2)
Từ (1) và (2) suy ra : tam giác AHF đồng dạng tam giác BHC(c-g-c)
suy ra góc AHF = góc BHC. Mà góc AHF phụ với góc FHB, do đó góc BHC phụ góc FHB. Vậy góc CHF =
900
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi giao điểm của AH và DC là I.
AF song song với DI (cùng vuông góc với AD) (1)
\(\Delta ADI=\Delta BAE\left(g.c.g\right)\Rightarrow DI=AE\) ( 2 cạnh tương ứng )
Mà \(AE=AF\left(gt\right)\Rightarrow DI=AF\) (2)
Từ (1) và (2) \(\Rightarrow AFID\)là hình bình hành.
Mà \(\widehat{FAD}=90^0\Rightarrow AFID\) là hình chữ nhật.
Từ đó: FBCI là hình chữ nhật nên IB = CF (t/c hình chữ nhật)
Gọi O là giao điểm của FC và BI \(\Rightarrow O\) là trung điểm của FC và BI
\(\Delta BHI\) vuông tại B có HO là đường trung tuyến ứng với cạnh CF nên
\(HO=\frac{1}{2}BI\Rightarrow HO=\frac{1}{2}CF\)
\(\Delta CHF\)có đường trung tuyến HO = 1/2 CF nên \(\Delta CHF\) vuông tại H.
Vậy \(\widehat{CHF}=90^0\)
Mình chỉ hướng dẫn bước thôi. Bạn tự trình bày nhé
Mong bạn hiểu lời giải. Chúc bạn học tốt.
![](https://rs.olm.vn/images/avt/0.png?1311)
Có tam giác BHCBHC ∼AFH∼AFH
Vì AFBC=AEAB=AHBHAFBC=AEAB=AHBH
và gHBC=FAHgHBC=FAH (c−g−c)(c−g−c)
⇒BHC=AHF⇒BHC=AHF mà AHF+BHF=90⇒BHF+BHC=90AHF+BHF=90⇒BHF+BHC=90=> FH VUÔNG GÓC HC
⇒⇒ đpcm.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔAED vuông tại A và ΔHAD vuông tại H có
góc D chung
=>ΔAED đồng dạng với ΔHAD
=>AE/AH=AD/DH
=>AE*DH=AH*AD
b: AH/AE=DH/AD
=>AH/AE=DH/DC
=>AH/DH=AF/DC
=>ΔAHF đồng dạng với ΔDHC
- Gọi AH cắt CD tại M; FC cắt BM tại N.
- Ta có: góc EAH=góc ABE( cùng phụ với góc HAB).
=> tam giác ADM=tam giác BAE(g.c.g).
=> AE=DM. Mà AF =AE=> DM=AF => FB=CM.
- Ta thấy FB=MC; FB vuông góc với BC; MC vuông góc với CB.
=> FBCM là hình chữ nhật.
- Có: FC cắt MB tại N; FBCM là hình chữ nhật => FN=NM=NB=NC (1).
- Tam giác MHB vuông tại H có N là trung điểm của BM nên HN=NB=NM (2).
- Từ (1);(2) => HN=NF=NC. => tam giác FHC vuông tại H.
Vậy góc FHC= 90 độ.
bạn tự vẽ hình nhá