Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, có ABCD là hình vuông=>\(AB=BC=CD=AD=20cm\)
\(=>DM=DC-MC=20-5=15cm\)
xét \(\Delta BMN\) vuông tại M\(=>BM=\sqrt{BC^2+MC^2}=\sqrt{20^2+5^2}=5\sqrt{17}cm\)
có: \(BN^2-NM^2=BM^2=425\)
\(< =>AB^2+AN^2\)\(-\left(ND^2+DM^2\right)\)\(=425\)
\(< =>20^2+\left(20-ND\right)^2-ND^2-15^2=425=>ND=3,75cm\)
b, như ý a, ta có: \(BM^2=x^2+20^2\)(CM=x)
\(=>DM=20-x\)
có từ ý a
\(=>BM^2=BN^2-NM^2\)
\(=>x^2+20^2=20^2+\left(20-ND\right)^2-\left(ND^2+DM^2\right)\)
\(x^2+20^2=20^2+\left(20-ND\right)^2\)\(-\left[ND^2+\left(20-x\right)^2\right]\)
\(< =>x^2+20^2=20^2\)\(-40ND+ND^2-ND^2-\left(20-x\right)^2\)
\(< =>x^2+20^2=-40ND+40x-x^2\)
\(< =>40ND=40x-x^2-x^2-20^2\)
\(=>ND=\dfrac{-2x^2+40x-400}{40}=\dfrac{-\left(x^2-20x+200\right)}{20}\)
có \(x^2-20x+200=x^2-2.10x+10^2-10^2+200=\left(x-10\right)^2+100\ge100\)
\(=>\left(-x^2-20x+200\right)\le100\) Dấu= xảy ra<=>x=10<=>MC=10cm
<=>M là trung điểm CD
đoạn cuối\(=>-\left(x^2-20x+200\right)\le100\) nhé không có mik viết vội nên dấu '-' ra bên ngoài
a/
Ta có
\(\widehat{BAE}+\widehat{DAE}=\widehat{ABC}=90^o\)
\(\widehat{FAD}+\widehat{DAE}=\widehat{FAE}=90^o\)
\(\Rightarrow\widehat{BAE}=\widehat{FAD}\)(1)
Ta có \(AB=AD\) (2)
Xét tg vuông BAE và tg vuông DAF
Từ (1) và (2) \(\Rightarrow\Delta BAE=\Delta DAF\) (hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau)
\(\Rightarrow AE=AF\Rightarrow\Delta AEF\) cân tại A
Mà \(\widehat{FAE}=90^o\Rightarrow\Delta AEF\) vuông cân tại A
Xét \(\Delta AEF\) có
IE=IF
\(\Rightarrow AD\perp EF\) (trong tg cân đường trung tuyến xp từ đỉnh đồng thời là đường cao)
Xét \(\Delta KEF\) có
IE=IF; \(AD\perp EF\)
\(\Rightarrow\Delta KEF\) là tg cân (trong tg đường cao xp từ đỉnh đồng thời là đường trung tuyến thì tg đó là tg cân) \(\Rightarrow KE=KF\)
b/
Ta có \(\Delta AEF\) vuông cân tại A \(\Rightarrow\widehat{AFE}=\widehat{AEF}=45^o\) (1)
Xét \(\Delta ABD\) có
AB=AD; \(\widehat{BAD}=90^o\Rightarrow\Delta ABD\) vuông cân tại A \(\Rightarrow\widehat{ADB}=\widehat{ABD}=45^o\) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ADB}=\widehat{AEF}\) (3)
Gọi P là giao của AD với EF; Q là giao của BD với AE
Xét \(\Delta AFP\) và \(\Delta ABQ\) có
AD=AB
\(\Delta AEF\) cân tại A => AF=AE
\(\widehat{DAF}=\widehat{BAE}\left(cmt\right)\)
\(\Rightarrow\Delta AFP=\Delta ABQ\left(c.g.c\right)\Rightarrow\widehat{APF}=\widehat{AQB}\)
Mà \(\widehat{APF}=\widehat{DPI};\widehat{AQB}=\widehat{EQI}\) (góc đối đỉnh)
\(\Rightarrow\widehat{DPI}=\widehat{EQI}\) (4)
Nối D với I, B với I. Xét \(\Delta DPI\) và \(\Delta EQI\)
Từ (3) và (4) \(\Rightarrow\widehat{DIP}=\widehat{EIQ}\)
Mà \(\widehat{EIQ}+\widehat{FIB}=\widehat{FIE}=180^o\)
\(\Rightarrow\widehat{DIP}+\widehat{FIB}=\widehat{DIB}=180^o\) => D; I; B thẳng hàng
c/
Ta có \(AM=AB-BM;CE=BC-BE\)
Mà \(BM=BE;AB=BC\)
\(\Rightarrow AM=CE\)
Ta có AD=CD
\(S_{\Delta ADM}=\frac{AD.AM}{2}=S_{\Delta CDE}=\frac{CD.CE}{2}\Rightarrow S_{\Delta ADM}+S_{\Delta CDE}=2S_{\Delta CDE}=CD.CE\)
\(S_{\Delta BME}=\frac{BE.BM}{2}=\frac{BE^2}{2}\)
Gọi a là cạnh hình vuông ABCD có
\(S_{\Delta DEM}=S_{ABCD}-\left(S_{\Delta ADM}+S_{\Delta CDE}+S_{BME}\right)=\)
\(=a^2-2S_{\Delta CDE}-\frac{BE^2}{2}=a^2-a.CE-\frac{\left(a-CE\right)^2}{2}=\)
\(=\frac{2a^2-2a.CE-a^2+2a.CE-CE^2}{2}=\frac{a^2-CE^2}{2}\)
\(\Rightarrow S_{\Delta DEM}\) lớn nhất khi \(a^2-CE^2\) lớn nhất \(\Rightarrow CE^2\) nhỏ nhất => CE nhỏ nhất
CE nhỏ nhất khi CE=0 => E trùng C
1) hình tự vẽ nhé
a) Vì ABCD là hình thoi (gt)
\(\Rightarrow AB=BC\left(đn\right)\)
\(\Rightarrow\Delta ABC\)cân tại B
Mà \(\widehat{B}=60^0\)
\(\Rightarrow\Delta ABC\)là tam giác đều
b) Vì \(\Delta ABC\)đều(cmt)\(\Rightarrow AB=BC=AC=a\)
Gọi O là giao điểm 2 đường chéo BD và AC
Vì ABCD là hình thoi (gt) \(\Rightarrow DB\perp AC\left(tc\right)\)
\(\Rightarrow BO\perp AC\)
Vì tam giác ABC đều mà trong tam giác ABC thì BO là đường cao ứng với cạnh AC
\(\Rightarrow BO\)là đường trung tuyến ứng vs cạnh AC(tc)
\(\Rightarrow O\)là trung điểm của AC
\(\Rightarrow AO=OC=\frac{1}{2}AC=\frac{1}{2}a\)
Áp dụng định lý Py-ta-go vào tam giác BOC vuông tại O ta được:
\(BO^2+OC^2=BC^2\)
\(BO^2+\frac{1}{4}a^2=a^2\)
\(BO^2=\frac{3}{4}a^2\)
\(\Rightarrow BO=\frac{\sqrt{3}}{2}a\)
Ta có: \(S_{ABC}=\frac{1}{2}BO.AC=\frac{1}{2}.\frac{\sqrt{3}a}{2}.a\)
\(=\frac{\sqrt{3}}{4}a^2\)
CMTT \(S_{ADC}=\frac{\sqrt{3}}{4}a^2\)
\(S_{ABCD}=S_{ADC}+S_{ABC}=\frac{\sqrt{3}}{2}a^2\)
1/A/vì AF\(\perp\)AE
=>AEF là tam giác vuông
vì ABCD là hình vuông
=> AB=AD ;góc B=góc D=90 độ
=>ABE và ADF là 2 tam giác vuông tại góc B và góc D
ta có:
góc FAD + góc DAE=90 độ
góc DAE+góc EAB=90 độ
=>góc FAD=góc EAB
xét 2 tam giác vuông ABE và ADF có:
AB =AD
góc FAD =góc EAB
=> ΔABE=ΔADF
=>AF=AE
=>ΔAEF là tam giác vuông cân
trong tam giác AFE có:
AF=AE
I là trung điểm của EF
=>AI là đg trung trực của EF
=>IK là đg trung trực của EF
=>KF=KE
mk chỉ làm đến đó thui nha
thấy đúng thì click cho mk