1. Cho hình thang cân ABCD có AB || CD, AB= 3 cm, CD=6 cm, AD=2,5 cm. Gọi M, N lần lư...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2:

a: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

=>BMNC là hình thang

mà góc B=góc C

nên BMNC là hình thang cân

b: Để BM=MN=NC thì MN=MB

=>góc MNB=góc MBN

=>góc ABN=góc CBN

=>BN là phân giác của góc ABC

=>N là chân đường phân giác kẻ từ B xuống AC

NM=NC

=>góc NMC=góc NCM

=>góc ACM=góc BCM

=>CM là phân giác của góc ACB

=>M là chân đường phân giác kẻ từ C xuống AB

3: TH1: AD//BC

Xét tứ giác ABCD có

AD//BC

AD=BC

=>ABCD là hình bình hành

=>góc C+góc D=180 độ

mà góc C=góc D

nên góc C=180/2=90 độ

=>ABCD là hình chữ nhật

=>ABCD là hình thang cân

TH2: AD ko song song với BC

Gọi O là giao của AD và BC

Xét ΔODC có góc C=góc D

nên ΔODC cân tại O

=>OD=OC

=>OA=OB

Xét ΔODC có OA/OD=OB/OC

nên AB//CD

=>ABCD là hình thang

mà góc C=góc D

nên ABCD là hình thang cân

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

15 tháng 2 2020

A B C D M N E

a, xét tứ giác  AMDN có : 

góc BAC = góc DMA = góc AND = 90 (gt)

=> AMDN là hình chữ nhật (dấu hiệu)

b,  AMDN là hình chữ nhật (câu a)

=> AN // DM hay AN // ME     (1)

AMDN là hình chữ nhật => AN = MD (tc)

MD = ME do E đối xứng cới D qua M (gt)

=> AN = ME   và (1)

=> AEMN là hình bình hành (dấu hiệu)

=> AN // ME (đn)

c, AMDN là hình chữ nhật (câu a)

để AMDN là hình vuông

<=> DN = DM (dh)               (2)

có D là trung điểm của BC (gt)

DN // AB do AMDN là hình chữ nhật

=> DN là đường trung bình của tam giác ABC 

=> DN = AB/2 (tc)

tương tự có DM = AC/2      và (2)

<=> AB/2 = AC/2

<=> AB = AC 

 tam giác ABC vuông tại A gt)

<=> tam giác ABC vuông cân tại A

vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông 

+ vì AMDN là hình vuông

=> MN _|_ AD (tc)

=> S AMDN = NM.AD : 2 (Đl)     

tam giác ABC vuông tại A có AD _|_ BC 

=> S ABC = AD.BC : 2   (đl)      (3)

BC = 2NM do NM là đường trung bình của tam giác ABC   và (3)

=> S ABC =  AD.2MN : 2

=> S ABC = 2S AMDN

26 tháng 12 2015

a) Hình thang cân ABCD, có:

AB // CD; AD = BC

Xét hình tam giác ACB, có:

I là trung điểm BC (gt)

Q là trung điểm AC (gt)

=> IQ là đường trung bình tam giác ACB

=> IQ // AB

mà AB // CD (cmt)

=> IQ // CD

Xét tam giác ACD, có:

Q là trung điểm AC 9gt)

P là trung điểm CD (gt)

=> QP là đường trung bình tam giác ACD

=> QP = 1/2 AD

mà AD = BC (I là trung điểm BC)

=> IB = IC = QP

Xét tứ giác QIPC, có:

QI // PC (cmt)

=> tứ giác QIPC là hình thang

có: QP = IC (cmt)

=> tứ giác QIPC là hình thang cân (đpcm)

b) Xét tam giác ABC, có:

QI là đường trung bình tam giác ABC (cmt)

=> tam giác CQI = 1/2 tam giác ABC

=> SQIC = 1/2 SABC

Cmtt: SCPQ = 1/2 SACD

mà mình thấy kì kì cái câu này theo mình là = 1/2 chứ sao = 1/4 (theo mình thôi nha)

c) Xét tam giác ABC, có:

M là trung điểm AB (gt)

Q là trung điểm AC (gt)

=> MQ là đường trung bình

=> MQ // BC

MQ = 1/2 BC

cmtt: MN // AD; MN = 1/2 AD

NP = 1/2; NP // BC

PQ // AD; QP = 1/2 AD

Xét tú giác MNPQ, có:

MQ // NP (cùng // BC)

MN // QP (cùng //AD)

=> MNPQ là hình bình hành

có: MQ = NP = 1/2 BC

=> MNPQ là hình thoi (đpcm)

p/s: có chỗ nào không hiểu thì inb hỏi nha ~