Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
A B C D M N E
a, xét tứ giác AMDN có :
góc BAC = góc DMA = góc AND = 90 (gt)
=> AMDN là hình chữ nhật (dấu hiệu)
b, AMDN là hình chữ nhật (câu a)
=> AN // DM hay AN // ME (1)
AMDN là hình chữ nhật => AN = MD (tc)
MD = ME do E đối xứng cới D qua M (gt)
=> AN = ME và (1)
=> AEMN là hình bình hành (dấu hiệu)
=> AN // ME (đn)
c, AMDN là hình chữ nhật (câu a)
để AMDN là hình vuông
<=> DN = DM (dh) (2)
có D là trung điểm của BC (gt)
DN // AB do AMDN là hình chữ nhật
=> DN là đường trung bình của tam giác ABC
=> DN = AB/2 (tc)
tương tự có DM = AC/2 và (2)
<=> AB/2 = AC/2
<=> AB = AC
tam giác ABC vuông tại A gt)
<=> tam giác ABC vuông cân tại A
vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông
+ vì AMDN là hình vuông
=> MN _|_ AD (tc)
=> S AMDN = NM.AD : 2 (Đl)
tam giác ABC vuông tại A có AD _|_ BC
=> S ABC = AD.BC : 2 (đl) (3)
BC = 2NM do NM là đường trung bình của tam giác ABC và (3)
=> S ABC = AD.2MN : 2
=> S ABC = 2S AMDN
a) Hình thang cân ABCD, có:
AB // CD; AD = BC
Xét hình tam giác ACB, có:
I là trung điểm BC (gt)
Q là trung điểm AC (gt)
=> IQ là đường trung bình tam giác ACB
=> IQ // AB
mà AB // CD (cmt)
=> IQ // CD
Xét tam giác ACD, có:
Q là trung điểm AC 9gt)
P là trung điểm CD (gt)
=> QP là đường trung bình tam giác ACD
=> QP = 1/2 AD
mà AD = BC (I là trung điểm BC)
=> IB = IC = QP
Xét tứ giác QIPC, có:
QI // PC (cmt)
=> tứ giác QIPC là hình thang
có: QP = IC (cmt)
=> tứ giác QIPC là hình thang cân (đpcm)
b) Xét tam giác ABC, có:
QI là đường trung bình tam giác ABC (cmt)
=> tam giác CQI = 1/2 tam giác ABC
=> SQIC = 1/2 SABC
Cmtt: SCPQ = 1/2 SACD
mà mình thấy kì kì cái câu này theo mình là = 1/2 chứ sao = 1/4 (theo mình thôi nha)
c) Xét tam giác ABC, có:
M là trung điểm AB (gt)
Q là trung điểm AC (gt)
=> MQ là đường trung bình
=> MQ // BC
MQ = 1/2 BC
cmtt: MN // AD; MN = 1/2 AD
NP = 1/2; NP // BC
PQ // AD; QP = 1/2 AD
Xét tú giác MNPQ, có:
MQ // NP (cùng // BC)
MN // QP (cùng //AD)
=> MNPQ là hình bình hành
có: MQ = NP = 1/2 BC
=> MNPQ là hình thoi (đpcm)
p/s: có chỗ nào không hiểu thì inb hỏi nha ~
2:
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
=>BMNC là hình thang
mà góc B=góc C
nên BMNC là hình thang cân
b: Để BM=MN=NC thì MN=MB
=>góc MNB=góc MBN
=>góc ABN=góc CBN
=>BN là phân giác của góc ABC
=>N là chân đường phân giác kẻ từ B xuống AC
NM=NC
=>góc NMC=góc NCM
=>góc ACM=góc BCM
=>CM là phân giác của góc ACB
=>M là chân đường phân giác kẻ từ C xuống AB
3: TH1: AD//BC
Xét tứ giác ABCD có
AD//BC
AD=BC
=>ABCD là hình bình hành
=>góc C+góc D=180 độ
mà góc C=góc D
nên góc C=180/2=90 độ
=>ABCD là hình chữ nhật
=>ABCD là hình thang cân
TH2: AD ko song song với BC
Gọi O là giao của AD và BC
Xét ΔODC có góc C=góc D
nên ΔODC cân tại O
=>OD=OC
=>OA=OB
Xét ΔODC có OA/OD=OB/OC
nên AB//CD
=>ABCD là hình thang
mà góc C=góc D
nên ABCD là hình thang cân