Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ (cùng phụ với CAB)
=> AC = 2AD
Áp dụng Pytago ta có:
AC2 = AD2 + DC2
<=> 4AD2 = AD2 + 900
<=> AD2 = 300
<=> \(AD=10\sqrt{3}\)
Kẻ CH vuông với AB
AHCD là hình chữ nhật (có góc A=D=H = 900)
=> AH = CD = 30; CH = AD = \(10\sqrt{3}\)
Tgiac ACB vuông tại C, ta có:
CH2 =HA.HB
=> \(HB=\frac{CH^2}{HA}=10\)
=> AB = AH + HB = 40
\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)
Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ (cùng phụ với CAB)
=> AC = 2AD
Áp dụng Pytago ta có:
AC2 = AD2 + DC2
<=> 4AD2 = AD2 + 900
<=> AD2 = 300
<=> \(AD=10\sqrt{3}\)
Kẻ CH vuông với AB
AHCD là hình chữ nhật (có góc A=D=H = 900)
=> AH = CD = 30; CH = AD = \(10\sqrt{3}\)
Tgiac ACB vuông tại C, ta có:
CH2 =HA.HB
=> \(HB=\frac{CH^2}{HA}=10\)
=> AB = AH + HB = 40
\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)
Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ (cùng phụ với CAB)
=> AC = 2AD
Áp dụng Pytago ta có:
AC2 = AD2 + DC2
<=> 4AD2 = AD2 + 900
<=> AD2 = 300
<=> \(AD=10\sqrt{3}\)
Kẻ CH vuông với AB
AHCD là hình chữ nhật (có góc A=D=H = 900)
=> AH = CD = 30; CH = AD = \(10\sqrt{3}\)
Tgiac ACB vuông tại C, ta có:
CH2 =HA.HB
=> \(HB=\frac{CH^2}{HA}=10\)
=> AB = AH + HB = 40
\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
dùng tỉ số lượng giác lần lượt tính được AD= \(10\sqrt{3}\) cm;AC= \(20\sqrt{3}\) cm;AB=20cm
do đó S hình thang\(=\frac{\left(ab+cd\right)\cdot ad}{2}=\frac{\left(20+30\right)\cdot10\sqrt{3}}{2}=\frac{500\sqrt{3}}{2}cm^2\)
Vậy....
Bài 1:
a: \(AB=21\cdot\dfrac{3}{7}=9\left(cm\right)\)
AC=21-9=12(cm)
=>BC=15(cm)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=7,2(cm)
Xét ΔAHB vuông tại H có \(AB^2=AH^2+BH^2\)
hay BH=5,4(cm)
=>CH=9,6(cm)