K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

Mình cần ngay bạn nào làm nhanh mình k mấy nick cho nha

Bài 1 : Cho tam giác ABC . Gọi D , E lần lượt là các điểm thuộc cạnh AC và AB sao cho DA = DC và EA =EB . Nối BD và CE cắt nhau tại K  Biết CE = 21 cm .  tính độ dài đoạn CK và KE .Bài 2 : Cho hình vuông ABCD có cạnh 6 cm . Trên đoạn BD lấy điểm E và P sao cho BE = EP = PD . a) Tính diện hình vuông ABCDb) Tính diện tích hình AECPc) M là điểm chính giữa cạnh PC , N là điểm chính giữa cạnh DC . MD và NP cắt...
Đọc tiếp

Bài 1 : Cho tam giác ABC . Gọi D , E lần lượt là các điểm thuộc cạnh AC và AB sao cho DA = DC và EA =EB . Nối BD và CE cắt nhau tại K  Biết CE = 21 cm .  tính độ dài đoạn CK và KE .

Bài 2 : Cho hình vuông ABCD có cạnh 6 cm . Trên đoạn BD lấy điểm E và P sao cho BE = EP = PD . 

a) Tính diện hình vuông ABCD

b) Tính diện tích hình AECP

c) M là điểm chính giữa cạnh PC , N là điểm chính giữa cạnh DC . MD và NP cắt nhau tại I . So sánh diện tích tam giác IPM với diện tích tam giác IDN

Bài 3 : Cho hình thang ABCD có đáy AB bằng 2/3 đáy CD . Trên cạnh BC lấy một điểm E sao cho đoạn BE bằng 2/5 đoạn CE . Biết diện tích tam giác AED là 32 cm2 . Tính diện tích hình thang ABCD .

Bài 4 : Cho tam giác vuông ABC có góc vuông tại A . Cạnh AB dài 3 cm ,  cạnh AC dài 4 cm , cạnh BC dài 5 cm . Trên cạnh AB lấy điểm  M sao cho AM bằng 2 cm , trên cạnh AC lấy điểm N sao cho AN bằng 1 cm , trên cạnh BC lấy điểm E sao cho BE bằng 2,5 cm . Tính diện tích tam giác MNE

 

14
15 tháng 5 2016

bài 1: ta có;CE là trung tuyến của tam giác ABC =>KE=1/3 CE=1/3 x21=7(cm)

CK=2/3 CE=2/3x21=14(cm0

15 tháng 5 2016

5 người đầu tiên mình sẽ được mình tích

a) Chu vi hình vuông ABCD là :

             3 * 4 = 12 ( cm )

    Diện tích hình vuông ABCD là :

             3 * 3 = 9 ( cm2 )

b) sai đề vì nối E với A thì mới ra hình thang, nếu không thì ra hình vuông với một cạnh kéo dài mà thôi

10 tháng 5 2024

AMC=2BMN

 

1.Cho hình thang ABCD.Hai đường chéo AC và BD cắt nhau tại I.Hãy tìm các cặp tam giác có diện tích bằng nhau?2.Cho hình thang ABCD,đáy bé AB,đáy lớn CD.Hai đường chéo cắt nhau tại O.biết diện tích tam giác AOB bằng 1 cm2,diện tích tam giác BOC là 2 cm2.Tính:a)Diện tích hình thang ABCD?b)tỉ số DC/AB3.Cho hình thang ABCD,đáy bé AB,đáy lớn CD.Hai đường chéo cắt nhau tại I.Biết diện tích tam giác AIB bằng 4...
Đọc tiếp

1.Cho hình thang ABCD.Hai đường chéo AC và BD cắt nhau tại I.Hãy tìm các cặp tam giác có diện tích bằng nhau?

2.Cho hình thang ABCD,đáy bé AB,đáy lớn CD.Hai đường chéo cắt nhau tại O.biết diện tích tam giác AOB bằng 1 cm2,diện tích tam giác BOC là 2 cm2.Tính:

a)Diện tích hình thang ABCD?

b)tỉ số DC/AB

3.Cho hình thang ABCD,đáy bé AB,đáy lớn CD.Hai đường chéo cắt nhau tại I.Biết diện tích tam giác AIB bằng 4 cm2,diện tích tam giác BIC bằng 10 cm2

a)So sánh diện tích tam giác AID và diện tích tam giác BIC

b)Tính diện tích hình thang ABCD

c)Tìm tỉ số 2 đáy DC/AB?

4.Cho hình thang vuông ABCD.Hai đường chéo cắt nhau tại I.Điểm E nằm dưới cạnh DC,tam giác DEC có chiều cao bằng chiều cao hình thang.

a)Trong hình thang ABCD có những hình tam giác nào có diện tích bằng nhau?
b)Tìm những tam giác có diện tích bằng diện tích tam giác DEC?

Giúp mình ngay nha cầu xin các bạn đó mình cần gấp nhớ giải đầy đủ đó nếu biết bài nào thì cứ làm nha

2
12 tháng 5 2019

bài này sao khó vậy

mình không làm được đâu 

nhưng cô của mình cũng ra bài giống y hệt nếu có người trả lời thì thông báo cho mình biết nha 

thank you very much

18 tháng 1 2021

Bạn nào làm ơn làm phước k cho mình được không? Mình đang ít điểm :((

22 tháng 6 2023

a)

\(S_{ADC}=S_{BDC}\) (vì có chung chiều cao và cạnh DC)

\(\Rightarrow S_{ADC}-S_{DIC}=S_{BDC}-S_{DIC}\)

\(\Rightarrow S_{ADI}=S_{BIC}\)

b)

Chiều cao hình thanh là:

\(\dfrac{14\times2}{4}=7\left(cm\right)\)

Diện tích hình thang ABCD là:

\(\dfrac{\left(9+22\right)\times7}{2}=108,5\left(cm^2\right)\)

c)

Độ dài DE là: \(22-4=18\left(cm\right)\)

\(\Rightarrow\dfrac{AB}{DE}=\dfrac{9}{18}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{S_{ABD}}{S_{BDE}}=\dfrac{1}{2}\) (có cùng chiều cao)