Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MN là đoạn vuông góc chung \(\Rightarrow N\) là trung điểm A'D
\(\Rightarrow\dfrac{A'N}{A'D}=\dfrac{1}{2}\)
a. Gọi cạnh lập phương là a
Ta có: \(AC=\sqrt{AB^2+AD^2}=a\sqrt{2}\)
\(AH=\sqrt{AD^2+DH^2}=a\sqrt{2}\)
\(CH=\sqrt{CD^2+DH^2}=a\sqrt{2}\)
\(\Rightarrow\Delta ACH\) đều \(\Rightarrow\widehat{CAH}=60^0\)
b.
Do \(B'C||A'D\Rightarrow\) góc giữa A'B và B'C bằng góc giữa A'B và A'D
Tương tự câu a, ta có tam giác A'BD đều \(\Rightarrow\widehat{BA'D}=60^0\)
c.
Do IJ song song SB (đường trung bình), CD song song AB \(\Rightarrow\) góc giữa IJ và CD bằng góc giữa SB và AB
Tam giác SAB đều (các cạnh bằng a) \(\Rightarrow\widehat{SBA}=60^0\)
d.
\(\overrightarrow{EG}=\overrightarrow{AC}\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}=60^0}\) do tam giác FAC đều
Thầy ơi thầy giúp em dạng này với ạ, em sắp thi rồi ạ :'(( https://hoc24.vn/cau-hoi/a-co-bao-nhieu-gia-tri-cua-a-de-limlimits-xrightarrowinftyleftsqrtx2-ax2021-x1righta2b-tim-a-de-ham-so-fxleftbeginmatrixdfracx31x1khixne-13akhix-1end.5243579572507
Do \(\left\{{}\begin{matrix}AA'\perp\left(ABCD\right)\Rightarrow AA'\perp AD\\AD\perp AC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AD\perp\left(AA'C\right)\)
Mà \(AD||A'D'\Rightarrow A'D'\perp\left(AA'C\right)\)
Lại có \(AA'||CC'\Rightarrow C'\in\left(AA'C\right)\Rightarrow A'D'\perp AC'\) (1)
\(\left\{{}\begin{matrix}AA'\perp AC\\AA'=AC\end{matrix}\right.\) \(\Rightarrow\) tứ giác AA'C'C là hình vuông
\(\Rightarrow AC'\perp A'C\) (2)
(1);(2) \(\Rightarrow AC'\perp\left(A'D'C\right)\)
1.
\(\overrightarrow{MN}=\overrightarrow{MB'}+\overrightarrow{B'B}+\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{AA'}+\dfrac{1}{2}\overrightarrow{AD}\)
\(\overrightarrow{AC'}=\overrightarrow{AB'}+\overrightarrow{B'C'}=\overrightarrow{AB}+\overrightarrow{AA'}+\overrightarrow{AD}\)
\(\overrightarrow{MN}.\overrightarrow{AC'}=\left(\dfrac{1}{2}\overrightarrow{AB}-\overrightarrow{AA'}+\dfrac{1}{2}\overrightarrow{AD}\right)\left(\overrightarrow{AB}+\overrightarrow{AA'}+\overrightarrow{AD}\right)\)
\(=\dfrac{1}{2}AB^2-AA'^2+\dfrac{1}{2}AD^2=0\)
\(\Rightarrow MN\perp AC'\)
b.
\(\left\{{}\begin{matrix}AA'\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(ACC'A'\right)\Rightarrow BD\perp AC'\)
Tương tự: \(A'B\perp\left(ADC'B'\right)\Rightarrow A'B\perp AC'\)
\(\Rightarrow AC'\perp\left(A'BD\right)\)
2.
Phương trình \(x^3-3x+2=0\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\) có nghiệm kép \(x=1\)
Nên giới hạn đã cho hữu hạn khi và chỉ khi phương trình: \(2\sqrt{1+ax^2}-bx-1=0\) có ít nhất 2 nghiệm \(x=1\) (tức là nghiệm bội 2 trở lên)
Thay \(x=1\) vào:
\(\Rightarrow2\sqrt{1+a}-b-1=0\Rightarrow2\sqrt{1+a}=b+1\)
\(\Rightarrow4\left(a+1\right)=b^2+2b+1\Rightarrow4a=b^2+2b-3\)
Khi đó:
\(\sqrt{4+4ax^2}-bx-1=0\Leftrightarrow\sqrt{4+\left(b^2+2b-3\right)x^2}-bx-1=0\)
\(\Leftrightarrow\sqrt{4+\left(b^2+2b-3\right)x^2}=bx+1\)
\(\Rightarrow4+\left(b^2+2b-3\right)x^2=b^2x^2+2bx+1\)
\(\Rightarrow\left(2b-3\right)x^2-2bx+3=0\)
\(\Rightarrow2bx^2-2bx-3x^2+3=0\)
\(\Rightarrow2bx\left(x-1\right)-\left(x-1\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2bx-3x-3\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\\left(2b-3\right)x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2b-3}\end{matrix}\right.\) \(\Rightarrow\dfrac{3}{2b-3}=1\Rightarrow b=3\Rightarrow a=3\)
\(c=\lim\limits_{x\rightarrow1}\dfrac{2\sqrt{1+3x^2}-3x-1}{x^3-3x+2}=\dfrac{1}{8}\)