Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy a MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2 và MN//AC
Để MNPQ là hình chữ nhật thì MN vuông góc với MQ
=>AC vuông góc với BD
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
A B C D M N P Q
a
Do:
MQ là đường trung bình của tam giác ABD nên MQ//BD và MQ=BD/2 (1)
NP là đường trung bình của tam giác CBD nên NP//BD và NP=BD/2 (2)
Từ (1) và (2) suy ra điều phải chứng minh ( có 2 cặp cạnh đối song song và bằng nhau )
b
MNPQ là hình chữ nhật nên QM vuông góc với MN.
Khi đó AC vuông góc với BD.
Vậy hình thang ABCD cần thêm điều kiện AC vuông góc với BD thì MNPQ là hình chữ nhật.
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
a,Xet tam giac ABC co :
AM=MB va BN=NC
=> MN la dtb => MN=1/2AC va MN//AC (1)
Xet tam giac ADC co :
DQ=QA va DP=PC
=> QP la dtb => QP=1/2AC va MN//AC (2)
Từ (1)(2) suy ra : MN=QP và MN//QP (phụ với AC)
Hay tu giac MNPQ la HBH
b, Xet tu giac MDPB co :
AB//DC=>MB//DP
AB=DC mà AM=MB va DP=PC
=> MB=DP
Hay tu giac MDPB la HBH
c, mk k bt lm xl bn
a,Xet tam giac ABC co :
AM=MB va BN=NC
=> MN la dtb => MN=1/2AC va MN//AC (1)
Xet tam giac ADC co :
DQ=QA va DP=PC
=> QP la dtb => QP=1/2AC va MN//AC (2)
Từ (1)(2) suy ra : MN=QP và MN//QP (phụ với AC)
Hay tu giac MNPQ la HBH
b, Xet tu giac MDPB co :
AB//DC=>MB//DP
AB=DC mà AM=MB va DP=PC
=> MB=DP
Hay tu giac MDPB la HBH
Câu 1:
a) Xét ΔAHD và ΔCKB có:
AD = BC (gt)
góc ADB = góc DBC ( SLT).
=> ΔAHD = ΔCKB (cạnh huyền- góc nhọn)
=> BH = CK( hai cạnh tương ứng)
Lấy M trung điểm BD
=> MD = MB
=> MD - DH = MB - BK
=> MH = MK (vì M Trung điểm HK)
Vì ABCD là hình bình hành nên AC cắt BD tại trung điểm M.
Hoặc M là Trung điểm AC và M trung điểm HK.
=> Tứ giác AKCH là hình bình hành (đpcm)
nguồn:Cho hình bình hành ABCD...