K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

Câu 1:

A B C D I G

\(\overrightarrow{BI}=\frac{1}{2}\overrightarrow{BD}+\frac{1}{2}\overrightarrow{BC}\\ =\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{AD}\right)+\frac{1}{2}\overrightarrow{BC}\\ =\frac{1}{2}\left(-\overrightarrow{AB}+\overrightarrow{AD}\right)+\frac{1}{2}\overrightarrow{AD}\\ =-\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AD}+\frac{1}{2}\overrightarrow{AD}\\ =-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}=-\frac{1}{2}\overrightarrow{a}+\overrightarrow{b}\)

\(\overrightarrow{CG}=\frac{1}{3}\overrightarrow{CC}+\frac{1}{3}\overrightarrow{CB}+\frac{1}{3}\overrightarrow{CD}\\ =-\frac{1}{3}\overrightarrow{AD}-\frac{1}{3}\overrightarrow{AB}=-\frac{1}{3}\overrightarrow{b}-\frac{1}{3}\overrightarrow{a}\)

3 tháng 8 2019

A B C G E D

\(a\text{) }\overrightarrow{DE}=\overrightarrow{DA}+\overrightarrow{AE}=-2\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\\ \overrightarrow{DG}=\overrightarrow{DA}+\overrightarrow{AG}\\ =-2\overrightarrow{AB}+\frac{1}{3}\left(\overrightarrow{AA}+\overrightarrow{AB}+\overrightarrow{AC}\right)\\ =-2\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\\ =-\frac{5}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)

\(\text{b) }\overrightarrow{DG}=-\frac{5}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}=\frac{5}{6}\left(-2\overrightarrow{AB}+\frac{2}{5}\overrightarrow{AC}\right)=\frac{5}{6}\overrightarrow{DE}\)

=> D;G;E thẳng hàng

c) \(\overrightarrow{KA}+\overrightarrow{KB}+3\overrightarrow{KC}=2\overrightarrow{KD}\)

\(\Rightarrow\overrightarrow{KA}+\overrightarrow{KB}+\overrightarrow{KC}=2\overrightarrow{KD}-2\overrightarrow{KC}\\ \Rightarrow3\overrightarrow{KG}=2\left(\overrightarrow{KD}-\overrightarrow{KC}\right)\\ \Rightarrow3\overrightarrow{KG}=2\overrightarrow{CD}\\ \Rightarrow\overrightarrow{KG}=\frac{2}{3}\overrightarrow{CD}\\ \Rightarrow\overrightarrow{KG}\text{ cùng phương }\overrightarrow{CD}\\ \Rightarrow KG//CD\)

10 tháng 12 2020

E cần gấp achij nào giúp e cho mai e nộp

10 tháng 12 2020

a) \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AN}=\dfrac{-1}{2}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\)

b) CG.CAN??

NV
4 tháng 11 2021

Do G là trọng tâm tam giác 

\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AD}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}=\dfrac{1}{3}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{CB}+\dfrac{1}{3}\overrightarrow{AC}\)

\(=\dfrac{2}{3}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{CB}=-\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\)

Do I là trung điểm AG

\(\Rightarrow\overrightarrow{AI}=\dfrac{1}{2}\overrightarrow{AG}=\dfrac{1}{2}\left(-\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\right)=-\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)

\(\overrightarrow{AK}=\dfrac{1}{5}\overrightarrow{AB}=\dfrac{1}{5}\left(\overrightarrow{AC}+\overrightarrow{CB}\right)=-\dfrac{1}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}\)

\(\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AI}=\overrightarrow{CA}-\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}=\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)

\(\overrightarrow{CK}=\overrightarrow{CA}+\overrightarrow{AK}=\overrightarrow{CA}-\dfrac{1}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}=\dfrac{4}{5}\overrightarrow{CA}+\dfrac{1}{5}\overrightarrow{CB}\)

NV
4 tháng 11 2021

undefined

NV
8 tháng 1 2021

Gọi M là trung điểm EF

\(\overrightarrow{BM}=\dfrac{1}{2}\overrightarrow{BE}+\dfrac{1}{2}\overrightarrow{BF}=-\dfrac{3}{2}\overrightarrow{AB}+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CF}\right)\)

\(=-\dfrac{3}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}-\dfrac{1}{4}\overrightarrow{AB}=-\dfrac{7}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\)

\(\overrightarrow{BG}=\dfrac{2}{3}\overrightarrow{BM}=-\dfrac{7}{6}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AD}\)

\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}=-\dfrac{1}{6}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AD}\)

\(\overrightarrow{DG}=\overrightarrow{DA}+\overrightarrow{AG}=-\overrightarrow{AD}+\overrightarrow{AG}=-\dfrac{1}{6}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AD}\)

NV
9 tháng 9 2021

F là trung điểm AB \(\Rightarrow\overrightarrow{AF}=\dfrac{1}{2}\overrightarrow{AB}\) ; E là trung điểm AC \(\Rightarrow\overrightarrow{AE}=\dfrac{1}{2}\overrightarrow{AC}\)

Ta có EF song song BC (đường trung bình)

Mà D là trung điểm BC \(\Rightarrow\) I là trung điểm EF \(\Rightarrow AI\) là trung tuyến tam giác AEF

\(\Rightarrow\overrightarrow{AI}=\dfrac{1}{2}\overrightarrow{AE}+\dfrac{1}{2}\overrightarrow{AF}\)

Theo tính chất trọng tâm:

 \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AD}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{2}{3}\left(\overrightarrow{AE}+\overrightarrow{AF}\right)=\dfrac{2}{3}\overrightarrow{AE}+\dfrac{2}{3}\overrightarrow{AF}\)

DE là đường trung bình tam giác ABC

\(\Rightarrow\overrightarrow{DE}=\dfrac{1}{2}\overrightarrow{BA}=-\dfrac{1}{2}\overrightarrow{AB}=-\overrightarrow{AE}\) hay \(\overrightarrow{DE}=-\overrightarrow{AE}+0.\overrightarrow{AF}\)

D là trung điểm BC \(\Rightarrow\overrightarrow{DC}=\dfrac{1}{2}\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{DC}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{AC}=-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}=-\overrightarrow{AE}+\overrightarrow{AF}\)

NV
9 tháng 9 2021

undefined

4 tháng 9 2019

các bn vẽ hình hộ t nha

Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR: Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR: a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD b) Vecto AB + vecto CD = Vecto AD + vecto CB c)Vecto AB - vecto CD = Vecto AB - vecto BD Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH + vecto IB +...
Đọc tiếp

Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR:

Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE

Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR:

a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD

b) Vecto AB + vecto CD = Vecto AD + vecto CB

c)Vecto AB - vecto CD = Vecto AB - vecto BD

Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH + vecto IB + vecto IK + vecto IC = Vecto 0

Bài 4: Cho hình bình hành ABCD với O là tâm. CMR:

a) Vecto CO - vecto OB = Vecto BA

b) Vecto AB - vecto BC = Vecto DB

c) Vecto DA - vecto DB = Vecto OD - vecto OC

d) Vecto DA - vecto DB + vecto DC = Vecto 0

Bài 4: Cho tam giác ABC vuông cân tại A, trọng tâm G. cạnh AB=a. Gọi I là trung điểm BC. Tính độ dài vecto sau:

a) Vecto a= vecto AB + vecto AC

b) Vecto b= vecto AB + vecto AC + vecto AG

c) Vecto c= vecto BA + vecto BC

d) Vecto d= vecto AB - vecto AC + vecto BI

5
4 tháng 8 2019

Xíu nữa làm :v

4 tháng 8 2019

1) Ta có:\(\overrightarrow{AB}+\overrightarrow{DE}-\overrightarrow{DB}+\overrightarrow{BC}=\overrightarrow{AE}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{BE}+\overrightarrow{EC}\)

\(=\overrightarrow{AC}+\overrightarrow{BE}+\overrightarrow{CE}+\overrightarrow{EC}=\overrightarrow{AC}+\overrightarrow{BE}\left(đpcm\right)\)2) a) Ta có: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{ED}+\overrightarrow{BF}+\overrightarrow{FE}+\overrightarrow{CD}+\overrightarrow{DF}\)\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{ED}+\overrightarrow{DF}+\overrightarrow{FE}\)

\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\left(đpcm\right)\)

b) Ta có: \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)

\(=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)c) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}-\overrightarrow{BD}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}\)

Ta có: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}+\overrightarrow{BC}\) ( đề bài bị lỗi gì à ?? :v ) hay do mình =))