Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d' // d ⇒ phương trình đường thẳng d' có dạng y = x + a (a khác m)
Gọi d' cắt (p) tại điểm A ⇒ yA = -4 ⇒ \(y_A=\dfrac{-x^2_A}{4}=-4\) ⇒ \(-x^2_A=-16\) ⇒ \(x^2_A=16\) ⇒ \(x_A=4;-4\)
+ Với A(4; -4) ; A ∈∈ d' => -4 = 4 + a=> a = - 8 => (d') có dạng : y = x -8
+ Với A(-4; -4); A ∈∈ d' => -4 = -4 + a => a = 0 => (d') có dạng : y = x
Bài 3:
Đặt \(a=m^2-4\)
\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến
\(\Leftrightarrow a< 0\)
\(\Leftrightarrow m^2-4< 0\)
\(\Leftrightarrow m^2< 4\)
\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)
\(\Leftrightarrow-2< m< 2\)
Vậy với \(-2< m< 2\)thì hàm số nghịch biến
\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)
\(\Leftrightarrow a>0\)
\(\Leftrightarrow m^2-4>0\)
\(\Leftrightarrow m^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)