K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

ta có: khi lấy thứ tự các điểm E;F thì góc ABE = góc CBF=30 độ

=> ABE+CBF=GÓC B

30 +30=B

B=60 độ

mà góc B=C (vì tam giác ABC cân tại A)

=> góc B=C=60 độ

=> tam giác ABH=ACH

=> góc A1=A2

xét tam giác AB1E VÀ AFE có:

TA CÓ: kẻ thêm điểm M sao cho BM=CF

=> AB-BM=AM

AC-FC=AF

mà AB=BC(GT)

mà BM=CF(KẺ THÊM)

=> AM=AF

xét tam giác AME VÀ AFE CÓ :

AM=AF(c/m trên)

A1=A2 *(vì tam giác ABH=ACH)

AE chung 

=> tam giác AME = AFE (c-g-c)

=> AE=AF

Khi lấy thứ tự các điểm E;F thì góc ABE = góc CBF=30 độ

Ta có

=> ABE+CBF=góc B

B=30 +30

B=60 độ

Mà góc B=C (vì tam giác ABC cân tại A)

=> góc B=C=60 độ

=> tam giác ABH=ACH

=> góc A1=A2

Xét tam giác AB1E VÀ AFE có:

 Kẻ thêm điểm M sao cho BM=CF

Ta có

=> AB-BM=AM

AC-FC=AF

mà AB=BC(GT)

mà BM=CF(KẺ THÊM)

=> AM=AF

Xét tam giác AME VÀ AFE CÓ :

AM=AF(c/m trên)

A1=A2 (vì tam giác ABH=ACH)

AE chung 

=> tam giác AME = AFE (c-g-c)

=> AE=AF

31 tháng 5 2018

2/ (Bạn tự vẽ hình giùm)

a/ Ta có DE // BC (gt)

=> \(\widehat{ADE}=\widehat{ABC}\)ở vị trí đồng vị

và \(\widehat{AED}=\widehat{ACB}\)ở vị trí đồng vị

Mà \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{ADE}=\widehat{AED}\)

=> \(\Delta ADE\)cân tại A

b/ Ta có \(\widehat{AED}=\widehat{CEG}\)(đối đỉnh)

và \(\widehat{ADE}=\widehat{BDF}\)(đối đỉnh)

và \(\widehat{ADE}=\widehat{AED}\)(cm câu a)

=> \(\widehat{CEG}=\widehat{BDF}\)(1)

Ta lại có \(\widehat{ECG}=90^o-\widehat{CEG}\)(\(\Delta CEG\)vuông tại G)

và \(\widehat{DBF}=90^o-\widehat{DFB}\)(\(\Delta BDF\)vuông tại F)

=> \(\widehat{ECG}=\widehat{DBF}\)(vì \(\widehat{CEG}=\widehat{BDF}\)) (2)

Ta tiếp tục có AB = AC (\(\Delta ABC\)cân tại A)

và AD = AE (\(\Delta ADE\)cân tại A)

=> AB - AD = AC - AE

=> DB = EC (3)

Từ (1), (2) và (3) => \(\Delta BFD=\Delta CGE\)(g. c. g) (đpcm)

c/ Ta có \(\widehat{ADE}=\widehat{AED}\)(cm câu a)

=> \(180^o-\widehat{ADE}=180^o-\widehat{AED}\)

=> \(\widehat{ADF}=\widehat{AEG}\)

và AD = AE (\(\Delta ADE\)cân tại A)

và DF = GE (\(\Delta BFD=\Delta CGE\))

=> \(\Delta ADF=\Delta AEG\)(c. g. c)

=> AF = AG (hai cạnh tương ứng) (đpcm)

d/ Ta có O là giao điểm của hai đường cao EI và DH của \(\Delta AGF\)

=> O là trực tâm của \(\Delta AGF\)

=> AO là đường cao thứ ba của \(\Delta AGF\)

=> AO \(\perp\)GF

Mà GF // BC

=> AO \(\perp\)BC

=> AO là đường cao của \(\Delta ABC\)

Mà \(\Delta ABC\)cân tại A

=> AO là đường phân giác của \(\Delta ABC\)

hay AO là tia phân giác của \(\widehat{BAC}\)(đpcm)

e/ Ta có DE \(\equiv\)BC

và AO \(\perp\)BC

=> AO \(\perp\)DE (đpcm)

phần \(AC\perp OG\)mình đang giải.

đề dài quá

đọc cx ngại oy ns j lm

12 tháng 1 2020

a) Do tam giác ABC vuông tại A 

=> Theo định lý py-ta-go ta có

BC^2=AB^2+AC^2

=>BC=\(\sqrt{AB^2+AC^2}\)\(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15

Vậy cạnh BC dài 15 cm

b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có

BE là cạnh chung

AB=BD(Giả thiết)

=>Tam giác ABE=Tam giác DBE(CGV-CH)

12 tháng 1 2020

B A C H D E K M

 GT 

 △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm

 D \in BC : BD = BA.

 DK ⊥ BC (K \in AB , DK ∩ AC = { E }

 AH ⊥ BC , AH ∩ BE = { M }

 KL

 a, BC = ?

 b, △ABE = △DBE ; BE là phân giác ABC

 c, △AME cân

Bài giải:

a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)

b, Xét △ABE vuông tại A và △DBE vuông tại D

Có: AB = BD (gt)

    BE là cạnh chung

=> △ABE = △DBE (ch-cgv)

=> ABE = DBE (2 góc tương ứng)

Mà BE nằm giữa BA, BD

=> BE là phân giác ABD

Hay BE là phân giác ABC

c, Vì △ABE = △DBE (cmt)

=> AEB = DEB (2 góc tương ứng)

Vì DK ⊥ BC (gt)

    AH ⊥ BC (gt)

=> DK // AH (từ vuông góc đến song song)

=> AME = MED (2 góc so le trong)

Mà MED = MEA (cmt)

=> AME = MEA 

=> △AME cân