Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d, \(\frac{3x}{x+2}=\frac{3\left(x+2\right)-6}{x+2}=3-\frac{6}{x+2}\)
\(\Rightarrow x+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x + 2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | -1 | -3 | 0 | -4 | 1 | -5 | 4 | -4 |
e, \(C=\frac{A}{B}>0\Rightarrow\frac{3x}{x+2}.\frac{x+2}{x^2+2}=\frac{3x}{x^2+2}>0\)
\(\Rightarrow3x>0\Rightarrow x>0\)vì \(x^2+2>0\)
Kết hợp với đk vậy \(x>0;x\ne\pm2\)
f, vừa hỏi thầy, nên quay lại làm nốt :>
f, Để \(\left|C\right|>C\Rightarrow C< 0\)vì \(\left|C\right|\ge0\)
\(\Rightarrow C=\frac{3x}{x^2+2}< 0\Rightarrow3x< 0\Leftrightarrow x< 0\)
Bài 1:
a) đkxđ: \(x\ne0;x\ne\pm1\)
\(D=\left(\frac{1}{1-x}+\frac{1}{1+x}\right)\div\left(\frac{1}{1-x}-\frac{1}{1+x}\right)+\frac{1}{x+1}\)
\(D=\left[\frac{1+x+1-x}{\left(1-x\right)\left(1+x\right)}\right]\div\left[\frac{1+x-1+x}{\left(1-x\right)\left(1+x\right)}\right]+\frac{1}{x+1}\)
\(D=\frac{2}{\left(1-x\right)\left(1+x\right)}\div\frac{2x}{\left(1-x\right)\left(1+x\right)}+\frac{1}{x+1}\)
\(B=\frac{1}{x}+\frac{1}{x+1}\)
\(B=\frac{2x+1}{x+1}\)
b) Ta có: \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\) đều ko thỏa mãn đkxđ
c) Khi \(D=\frac{3}{2}\)
\(\Leftrightarrow\frac{2x+1}{x+1}=\frac{3}{2}\)
\(\Leftrightarrow4x+2=3x+3\Rightarrow x=1\) không thỏa mãn đkxđ
Bài 2: (Sửa đề tí nếu sai ib t lm lại nhé:)
a) đkxđ: \(x\ne\pm1\)
\(E=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right)\div\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)
\(E=\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}\div\frac{x-1+x\left(x+1\right)+2}{\left(x-1\right)\left(x+1\right)}\)
\(E=\frac{x^2+2x+1-x^2+2x-1}{x-1+x^2+x+2}\)
\(E=\frac{4x}{\left(x+1\right)^2}\)
b) Ta có: \(x^2-9=0\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
+ Nếu: \(x=3\)
=> \(E=\frac{4.3}{\left(3+1\right)^2}=\frac{3}{4}\)
+ Nếu: \(x=-3\)
=> \(E=\frac{4.\left(-3\right)}{\left(-3+1\right)^2}=-3\)
c) Để \(E=-3\)
\(\Leftrightarrow\frac{4x}{\left(x+1\right)^2}=-3\)
\(\Leftrightarrow4x=-3x^2-6x-3\)
\(\Leftrightarrow3x^2+10x+3=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-\frac{1}{3}\end{cases}}\)
d) Để \(E< 0\)
\(\Leftrightarrow\frac{4x}{\left(x+1\right)^2}< 0\) , mà \(\left(x+1\right)^2>0\left(\forall x\right)\)
=> Để E < 0 => \(4x< 0\Rightarrow x< 0\)
Vậy x < 0 thì E < 0
e) Ta có: \(E-x-3=0\)
\(\Leftrightarrow\frac{4x}{\left(x+1\right)^2}=x+3\)
\(\Leftrightarrow4x=\left(x^2+2x+1\right)\left(x+3\right)\)
\(\Leftrightarrow x^3+5x^2+7x+3-4x=0\)
\(\Leftrightarrow x^3+5x^2+3x+3=0\)
Đến đây bấm máy tính thôi, nghiệm k đc đẹp cho lắm:
\(x=-4,4798...\) ; \(x=-0,2600...+0,7759...\) ; \(x=-0,2600...-0,7759...\)
18. Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)
\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{1}{abz}+\frac{1}{xbc}+\frac{1}{acy}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{ayz+bxz+cxy}{abcxyz}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
19. Nhân cả hai vế của đẳng thức giả thiết với \(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\)được
\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=0\)
Ta có ;
\(\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=\frac{\left(a+b\right)\left(a-b\right)+\left(b+c\right)\left(b-c\right)+\left(c+a\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Lại gặp đồng râm rồi t c~ ở B.Ninh :_. Theo mk biết thì cái này dùng luôn được nhé vì nó chỉ là biến thể của BĐT Cauchy-Schwarz thôi mà c/m nó cũng dễ. Mk cm dạng tổng quát của nó luôn nhé
\(\left\{{}\begin{matrix}a_1;a_2;....;a_n\\b_1;b_2;....;b_n\end{matrix}\right.\)\(>0\). CMR \(\dfrac{a^2_1}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a_n^2}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{b_1+b_2+...+b_n}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(\dfrac{a^2_1}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\right)\left(b_1+b_2+...+b_2\right)\ge\left(a_1+a_2+...+a_n\right)^2\)
\(\Leftrightarrow\dfrac{a^2_1}{b_1}+\dfrac{a^2_2}{b_2}+...+\dfrac{a^2_n}{b_n}\ge\dfrac{\left(a_1+a_2+...+a_n\right)^2}{\left(b_1+b_2+...+b_2\right)}\) *đúng*
Dc chứ bạn đấy là bđt cơ bản mà
Cauchy -schwarz hay còn gọi là bunhia dạng phân số :)
Đặt;\(\frac{a}{d}=x;\frac{b}{e}=y;\frac{c}{f}=z\left(x,y,z>0\right)\)\(\Rightarrow\)Ta cần tính \(x^2+y^2+z^2\)
Suy ra ta có hệ phương trình;\(\hept{\begin{cases}x+y+z=1\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\end{cases}}\)
Từ (2) suy ra xy+yz+xz=0
Lại có \(1=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)
Suy ra \(x^2+y^2+z^2=1\)