Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1: ta thay \(a^2=b^2+c^2;b^2=2c^2-2013\)vào Q ta được:
Q= \(5a^2-7b^2-c^2=5\left(a^2+b^2\right)-7b^2-c^2=-2b^2+4c^2\)
=\(-2\left(2c^2-2013\right)+4c^2=4026\)
ta có a2=b2+c2=2c2-2013+c2=3c2-2013
ta có Q=5a2-7b2-c2=5(3c2-2013)-7(2c2-2013)-c2
=15c2-10065-14c2+14091-c2
=14091-10065
=4026
Bài 1
a) \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ... + \(\frac{1}{99.100}\)
= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{100}\)
= 1 - \(\frac{1}{100}\)
= \(\frac{99}{100}\)
Còn những bài kia em không biết làm vì em mới học lớp 6.
Chúc anh/chị học tốt!
Bài 1
a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
Bài 3:
b)\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Ta thấy: \(\begin{cases}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{cases}\)
\(\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)
\(\Rightarrow\begin{cases}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{cases}\)\(\Rightarrow\begin{cases}2x-27=0\\3y+10=0\end{cases}\)\(\Rightarrow\begin{cases}2x=27\\3y=-10\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}\)
Ta có :
\(a^2=2c^2-2013+c^2\)
\(=3c^2-2013\)
\(\Rightarrow Q=5.\left(3c^2-2013\right)-7\left(2c^2-2013\right)-c^2\)
\(=15c^2-10065-14c^2+14091-c^2=4026\)
Vậy Q=4026
Ta có
\(a^2=2c^2-2013+c^2=3c^2-2013\)
\(\Rightarrow Q=5\left(3c^2-2013\right)-7\left(2c^2-2013\right)-c^2=15c^2-10065-14c^2+14091-c^2=4026\)
a .
\(b^2\)= ac => \(\frac{a}{b}\)=\(\frac{b}{c}\)
c\(^2\)= bd => \(\frac{b}{c}=\frac{c}{d}\)
=>\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{a^3}{b^3}=\frac{c^3}{d^3}\)=\(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)( theo \(\frac{t}{c}\)của dãy tỉ số = )
Mà \(\frac{a^3}{b^3}\)= \(\frac{a}{b}\)x \(\frac{a}{b}\).x \(\frac{a}{b}\) = \(\frac{a}{b}\) x\(\frac{b}{c}\)x\(\frac{c}{d}\)= \(\frac{a}{d}\)
Nên \(\frac{\left(a^3+b^3+c^3\right)}{\left(b^3+c^3+d^3\right)}\)=\(\frac{a}{d}\)
x-y=2<=>x=y+2
thay vào Q được:
Q=(y+2)^2+y^2-(y+2)y
=y^2+2y+4
=(y+1)^2+3
=>A>=3
dấu bằng xảy ra <=>y= -1 và x=1
vậy min Q=3
4. \(1^2+2^2+3^2+...+10^2+11^2=506\)
Ta có: \(2^2+4^2+6^2+...+20^2+22^2\)
\(=2^2.1^2+2^2.2^2+2^2.3^2+...+2^2.10^2+2^2.11^2\)
\(=2^2\left(1^2+2^2+3^2+...+10^2+11^2\right)\)
\(=2^2.506=2024\)
Vậy....
1.
Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\)
\(\Rightarrow\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a^2}{4}=\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{a^2-b^2+2c^2}{4-9+32}=\dfrac{108}{27}=4\)
\(\Rightarrow a^2=16\)
\(\Rightarrow b^2=36\)
\(\Rightarrow c^2=64\)
\(\Rightarrow a=\pm4\) , \(b=\pm6\) , \(c=\pm8\)
1. Ta có : a2 = b2 + c2 và b2 = 2c2 - 2013
\(\Leftrightarrow\)a2 - b2 - c2 = 0 và b2 - 2c2 = -2013
Do đó : M = 5a2 - 7b2 - c2
= ( 5a2 - 5b2 - 5c2 ) = -2b2 + 4c2
= 5 . ( a2 - b2 - c2 ) - 2 . ( b2 - 2c2 )
= 0 - 2 . ( -2013 ) = 4026