Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H I E
a) Xét \(\Delta IHC\)và \(\Delta IEC\)ta có:
IH = IE (gt)
\(\widehat{HIC}=\widehat{EIC}=90^o\)
Cạnh IC chung
\(\Rightarrow\Delta IHC=\Delta IEC\left(c.g.c\right)\)
\(\Rightarrow HC=CE\)(2 cạnh tương ứng)
Vậy \(HC=CE\)
b) Theo câu a) \(\Delta IHC=\Delta IEC\left(c.g.c\right)\)
\(\Rightarrow HI=EI\)(2 cạnh tương ứng)
Xét \(\Delta AHI\)và \(\Delta AEI\)ta có:
HI = EI (chứng mình trên)
\(\widehat{AIH}=\widehat{AIE}=90^o\)
Cạnh AI chung
\(\Rightarrow AH=AE\)(2 cạnh tương ứng)
\(\Rightarrow\Delta AHE\)cân tại A
Phần còn lại tự làm
c) Xét \(\Delta AHB\)vuông tại H ta có:
\(AB>AH\)(Trong tam giác vuông cạnh huyền là cạnh lớn nhất) (1)
mà \(AH=AE\)(theo câu b) (2)
Từ (1) và (2) \(\Rightarrow AE< AB\)
Em vừa nghĩ ra 2 cách làm bằng kiến thức lớp 7, co check giùm em nhé!
Ta có: \(\widehat{CAD}=90^0-\widehat{DAB}\)
và \(\widehat{CDA}=90^0-\widehat{HAD}\)
Mà \(\widehat{DAB}=\widehat{HAD}\left(gt\right)\Rightarrow AC=DC\)
Tương tự ta có: AB = EB
\(\Rightarrow AB+AC=EB+DC\)
\(=ED+DB+DC=DE+BC\)
\(\Rightarrow DE=AB+AC-BC=3+4-5=2\left(cm\right)\)
Vậy DE = 2 cm
A B C H D E
Ta có: \(\Delta\)ABC vuông tại A
=> BC\(^2\)=AB\(^2\)+ AC\(^2\)= 3\(^2\)+ 4\(^2\)= 25 => BC = 5 (cm)
Có: \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)
=> AH = 2,4 (cm)
Có: \(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)(cm)
=> BH = 5 - 3,2 = 1,8 ( cm )
AE là phân giác ^CAH => \(\frac{EC}{EH}=\frac{AC}{AH}=\frac{4}{2,4}\) mà EC + EH = CH = 3,2
=> EC = 2 ( cm ) ; EH = 1,2 ( cm )
AD là phân giác ^BAH => \(\frac{DH}{DB}=\frac{AH}{AB}=\frac{2,4}{3}\); mà DH + DB = HB = 1,8
=> DH = 0,8 ( cm ) ; BD = 1( cm )
Vậy DE = DH + HE = 0,8 + 1,2 = 2 ( cm )